This is currently considered experimental, but most of the more
commonly used instructions should work.
So far only SI has been extensively tested, CI and VI probably work too,
but may be buggy. The current set of tests cases do not give complete
coverage, but I think it is sufficient for an experimental assembler.
See the documentation in R600Usage for more information.
llvm-svn: 234381
This allows the compiler/assembly programmer to switch back to a
section. This in turn fixes the bootstrap failure on powerpc (tested
on gcc110) without changing the ppc codegen at all.
I will try to cleanup the various getELFSection overloads in a followup patch.
Just using a default argument now would lead to ambiguities.
llvm-svn: 234099
We don't need to represent UnwindHelp in IR. Instead, we can use the
knowledge that we are emitting the parent function to decide if we
should create the UnwindHelp stack object.
llvm-svn: 234061
This makes it possible to use the same representation of llvm.eh.actions
in outlined handlers as we use in the parent function because i32's are
just constants that can be copied freely between functions.
I had to add a sentinel alloca to the list of child allocas so that we
don't try to sink the catch object into the handler. Normally, one would
use nullptr for this kind of thing, but TinyPtrVector doesn't support
null elements. More than that, it's elements have to have a suitable
alignment. Therefore, I settled on this for my sentinel:
AllocaInst *getCatchObjectSentinel() {
return static_cast<AllocaInst *>(nullptr) + 1;
}
llvm-svn: 233947
This lets us catch exceptions in simple cases.
N.B. Things that do not work include (but are not limited to):
- Throwing from within a catch handler.
- Catching an object with a named catch parameter.
- 'CatchHigh' is fictitious, we aren't sure of its purpose.
- We aren't entirely efficient with regards to the number of EH states
that we generate.
- IP-to-State tables are sensitive to the order of emission.
llvm-svn: 233767
Summary:
Move lib/Fuzzer docs from a README.txt to a proper .rst file.
This change does not add any content, just formatting.
Test Plan: n/a
Reviewers: samsonov
Reviewed By: samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8710
llvm-svn: 233638
We don't have any logic to emit those tables yet, so the SDAG lowering
of this intrinsic is just a stub. We can see the intrinsic in the
prepared IR, though.
llvm-svn: 233354
Summary:
This patch is an attempt at making `DenseMapIterator`s "fail-fast".
Fail-fast iterators that have been invalidated due to insertion into
the host `DenseMap` deterministically trip an assert (in debug mode)
on access, instead of non-deterministically hitting memory corruption
issues.
Enabling fail-fast iterators breaks the LLVM C++ ABI, so they are
predicated on `LLVM_ENABLE_ABI_BREAKING_CHECKS`.
`LLVM_ENABLE_ABI_BREAKING_CHECKS` by default flips with
`LLVM_ENABLE_ASSERTS`, but can be clamped to ON or OFF using the CMake /
autoconf build system.
Reviewers: chandlerc, dexonsmith, rnk, zturner
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8351
llvm-svn: 233310
We don't have any logic to emit those tables yet, so the sdag lowering
of this intrinsic is just a stub. We can see the intrinsic in the
prepared IR, though.
llvm-svn: 233209
Cleanup some bitrot in SourceLevelDebugging.rst.
- Pull the still-relevant details about individual descriptors into
LangRef.rst. Cut a lot of it to avoid over-describing the fields,
as the C++ classes and assembly format are mostly self-describing
now. If there's anything specific that I shouldn't have cut, let me
know and I'll add it back.
- Rewrite the remaining sections to refer to the new debug info
hierarchy in LangRef.rst.
llvm-svn: 232566
After much bike shed discussions, we seem to agree to a few loose
but relevant guidelines on how to prepare a commit message. It also
points the attribution section to the new commit messages section
to deduplicate information.
llvm-svn: 232334
* Moved autotools configure & build example out of "Getting Started Quickly (A Summary)" and into BuildingLLVMWithAutoTools.
* Removed the annotations that CMake is the recommended process and Autotools is alternate.
* Added brief documentation about build targets under "Getting Started Quickly..."
* Added Overview text to BuildingLLVMWithAutotools
* Fixed up a broken link.
llvm-svn: 232278
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
llvm-svn: 232184
Update the doxygen configuration file and Makefile build rules
to provide better output (simply use the default stylesheet and template
from the Doxygen distribution.)
This CL has upgrade doxygen.cfg.in to Doxygen 1.8.6.
llvm-svn: 232064
This CL adds --enable-doxygen-search to enable doxygen search engine
and --enable-doxygen-qt-help to enable the Qt help file generation.
llvm-svn: 232062
These docs *don't* match the way WinEHPrepare uses them yet, and
verifier support isn't implemented either. The implementation will come
after the documentation text is reviewed and agreed upon.
llvm-svn: 232003
Runtime unrolling is an expensive optimization which can bring benefit
only if the loop is hot and iteration number is relatively large enough.
For some loops, we know they are not worth to be runtime unrolled.
The scalar loop from vectorization is one of the cases.
llvm-svn: 231631
These came from my own experience and may not apply equally to all use cases. Any alternate perspective anyone has should be used to refine these.
As always, grammar and spelling adjustments are more than welcome. Please just directly commit a fix if you see something problematic.
llvm-svn: 231352
Here's a rough/first draft - it at least hits the actual textual IR
examples and some of the phrasing. It's probably worth a full pass over,
but I'm not sure how much these docs should reflect the strange
intermediate state we're in anyway.
Totally open to lots of review/feedback/suggestions.
llvm-svn: 231294
Ultimately, __CxxFrameHandler3 needs us to put a stack offset in a
table, and it will take responsibility for copying the exception object
into that slot. Modelling the exception object as an SSA value returned
by begincatch isn't going to work in general, so make it use an output
parameter.
Reviewers: andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D7920
llvm-svn: 231086
Move the specialized metadata nodes for the new debug info hierarchy
into place, finishing off PR22464. I've done bootstraps (and all that)
and I'm confident this commit is NFC as far as DWARF output is
concerned. Let me know if I'm wrong :).
The code changes are fairly mechanical:
- Bumped the "Debug Info Version".
- `DIBuilder` now creates the appropriate subclass of `MDNode`.
- Subclasses of DIDescriptor now expect to hold their "MD"
counterparts (e.g., `DIBasicType` expects `MDBasicType`).
- Deleted a ton of dead code in `AsmWriter.cpp` and `DebugInfo.cpp`
for printing comments.
- Big update to LangRef to describe the nodes in the new hierarchy.
Feel free to make it better.
Testcase changes are enormous. There's an accompanying clang commit on
its way.
If you have out-of-tree debug info testcases, I just broke your build.
- `upgrade-specialized-nodes.sh` is attached to PR22564. I used it to
update all the IR testcases.
- Unfortunately I failed to find way to script the updates to CHECK
lines, so I updated all of these by hand. This was fairly painful,
since the old CHECKs are difficult to reason about. That's one of
the benefits of the new hierarchy.
This work isn't quite finished, BTW. The `DIDescriptor` subclasses are
almost empty wrappers, but not quite: they still have loose casting
checks (see the `RETURN_FROM_RAW()` macro). Once they're completely
gutted, I'll rename the "MD" classes to "DI" and kill the wrappers. I
also expect to make a few schema changes now that it's easier to reason
about everything.
llvm-svn: 231082
Patch by Evangelos Foutras:
r220899 started using ocamlfind to build the OCaml bindings but
docs/Makefile still contains references to the OCAMLDOC macro which
is no longer being defined. The result is that OCaml documentation
isn't generated/installed.
llvm-svn: 230850
As mentioned on llvm-dev, this is a new documentation page intended to collect tips for frontend authors on how to generate IR that LLVM is able to optimize well. These types of things come up repeated in review threads and it would be good to have a place to save them.
I added a small handful to start us off, but I mostly want to get the framework in place. Once the docs are here, we can add to them incrementally. If you know of something appropriate for this page, please add it!
Differential Revision: http://reviews.llvm.org/D7890
llvm-svn: 230807
It didn't seem worth leaving behind a guideline to use '= delete' to
make a class uncopyable. That's a well known C++ design pattern.
Reported on the mailing list and in PR22724.
llvm-svn: 230776
When I originally committed the statepoint docs, I left placeholders for example IR fragments. I'm finally getting around to filling those in.
I also added IR fragments to illustrate the usage of the PlaceSafepoints pass while I was at it.
llvm-svn: 230601
Add a brief section linking to the experimental statepoint intrinsics analogous to the one we have linking to patchpoint.
While I'm here, cleanup some wording about what the gc "name" attribute actually means. It's not the name of a *collector* it's the name of the *strategy* which may be compatible with multiple collectors.
llvm-svn: 230576
The builder is based on a layout algorithm that tries to keep members of
small bit sets together. The new layout compresses Chromium's bit sets to
around 15% of their original size.
Differential Revision: http://reviews.llvm.org/D7796
llvm-svn: 230394
In this change:
- Put the getting started section first
- Create a dedicated section to document the built in collector strategies
- Move discuss of ShadowStack into new section
- Add placeholders for erlang, ocaml, and statepoint-example collectors
There will be many more changes following. I plan on full integrating the documentation for gc.statepoint and gc.root. I want to make it much clearer on how to get started and what users should expect in terms of effort.
llvm-svn: 230359
This patch introduces a new mechanism that allows IR modules to co-operatively
build pointer sets corresponding to addresses within a given set of
globals. One particular use case for this is to allow a C++ program to
efficiently verify (at each call site) that a vtable pointer is in the set
of valid vtable pointers for the class or its derived classes. One way of
doing this is for a toolchain component to build, for each class, a bit set
that maps to the memory region allocated for the vtables, such that each 1
bit in the bit set maps to a valid vtable for that class, and lay out the
vtables next to each other, to minimize the total size of the bit sets.
The patch introduces a metadata format for representing pointer sets, an
'@llvm.bitset.test' intrinsic and an LTO lowering pass that lays out the globals
and builds the bitsets, and documents the new feature.
Differential Revision: http://reviews.llvm.org/D7288
llvm-svn: 230054
If the landingpad of the invoke is using a personality function that
catches asynch exceptions, then it can catch a trap.
Also add some landingpads to invalid LLVM IR test cases that lack them.
Over-the-shoulder reviewed by David Majnemer.
llvm-svn: 228782
Summary:
The CMake configuration is explicitely looking for Debug build, all the
other variant disable assertions.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7359
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 228653
Remove handling for DW_TAG_constant. We started producing it in
r110656, but reverted that in r110876 without dropping the support.
Finish the job.
llvm-svn: 228623
This is a refactoring to restructure the single user of performCustomLowering as a specific lowering pass and remove the custom lowering hook entirely.
Before this change, the LowerIntrinsics pass (note to self: rename!) was essentially acting as a pass manager, but without being structured in terms of passes. Instead, it proxied calls to a set of GCStrategies internally. This adds a lot of conceptual complexity (i.e. GCStrategies are stateful!) for very little benefit. Since there's been interest in keeping the ShadowStackGC working, I extracting it's custom lowering pass into a dedicated pass and just added that to the pass order. It will only run for functions which opt-in to that gc.
I wasn't able to find an easy way to preserve the runtime registration of custom lowering functionality. Given that no user of this exists that I'm aware of, I made the choice to just remove that. If someone really cares, we can look at restoring it via dynamic pass registration in the future.
Note that despite the large diff, none of the lowering code actual changes. I added the framing needed to make it a pass and rename the class, but that's it.
Differential Revision: http://reviews.llvm.org/D7218
llvm-svn: 227351
Again, I'd like to emphasize to everyone that this sort of markup change
is *not* what you should be concerned about when writing docs. Focus on
*content*.
I applaud Chandler for focusing on the fantastic content of this new
section!
llvm-svn: 227305
polymorphism, and virtual dispatch.
This is essentially trying to explain the emerging design techniques
being used in LLVM these days somewhere more accessible than the
comments on a particular piece of infrastructure. It covers the
"concepts-based polymorphism" that caused some confusion during initial
reviews of the new pass manager as well as the tagged-dispatch mechanism
used pervasively in LLVM and Clang.
Perhaps most notably, I've tried to provide some criteria to help
developers choose between these options when designing new pieces of
infrastructure.
Differential Revision: http://reviews.llvm.org/D7191
llvm-svn: 227292
The number of lines of code in Kaleidoscope has risen from the
previously reported 700 to 986 according to the cloc tool. This tools
was run on the toy.cpp file from Chapter 8.
llvm-svn: 227019
Specifically, gc.result benefits from this greatly. Instead of:
gc.result.int.*
gc.result.float.*
gc.result.ptr.*
...
We now have a gc.result.* that can specialize to literally any type.
Differential Revision: http://reviews.llvm.org/D7020
llvm-svn: 226857
a LoopInfoWrapperPass to wire the object up to the legacy pass manager.
This switches all the clients of LoopInfo over and paves the way to port
LoopInfo to the new pass manager. No functionality change is intended
with this iteration.
llvm-svn: 226373
Bill Schmidt pointed out that some adjustments would be needed to properly
support powerpc64le (using the ELF V2 ABI). For one thing, R11 is not available
as a scratch register, so we need to use R12. R12 is also available under ELF
V1, so to maintain consistency, I flipped the order to make R12 the first
scratch register in the array under both ABIs.
llvm-svn: 226247
This option takes the name of the basic block you want to visualize
with -view-*-dags
Differential Revision: http://reviews.llvm.org/D6948
llvm-svn: 225953
This re-applies r225808, fixed to avoid problems with SDAG dependencies along
with the preceding fix to ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs.
These problems caused the original regression tests to assert/segfault on many
(but not all) systems.
Original commit message:
This commit does two things:
1. Refactors PPCFastISel to use more of the common infrastructure for call
lowering (this lets us take advantage of this common code for lowering some
common intrinsics, stackmap/patchpoint among them).
2. Adds support for stackmap/patchpoint lowering. For the most part, this is
very similar to the support in the AArch64 target, with the obvious differences
(different registers, NOP instructions, etc.). The test cases are adapted
from the AArch64 test cases.
One difference of note is that the patchpoint call sequence takes 24 bytes, so
you can't use less than that (on AArch64 you can go down to 16). Also, as noted
in the docs, we take the patchpoint address to be the actual code address
(assuming the call is local in the TOC-sharing sense), which should yield
higher performance than generating the full cross-DSO indirect-call sequence
and is likely just as useful for JITed code (if not, we'll change it).
StackMaps and Patchpoints are still marked as experimental, and so this support
is doubly experimental. So go ahead and experiment!
llvm-svn: 225909
This adds assembly and bitcode support for `MDLocation`. The assembly
side is rather big, since this is the first `MDNode` subclass (that
isn't `MDTuple`). Part of PR21433.
(If you're wondering where the mountains of testcase updates are, we
don't need them until I update `DILocation` and `DebugLoc` to actually
use this class.)
llvm-svn: 225830
This commit does two things:
1. Refactors PPCFastISel to use more of the common infrastructure for call
lowering (this lets us take advantage of this common code for lowering some
common intrinsics, stackmap/patchpoint among them).
2. Adds support for stackmap/patchpoint lowering. For the most part, this is
very similar to the support in the AArch64 target, with the obvious differences
(different registers, NOP instructions, etc.). The test cases are adapted
from the AArch64 test cases.
One difference of note is that the patchpoint call sequence takes 24 bytes, so
you can't use less than that (on AArch64 you can go down to 16). Also, as noted
in the docs, we take the patchpoint address to be the actual code address
(assuming the call is local in the TOC-sharing sense), which should yield
higher performance than generating the full cross-DSO indirect-call sequence
and is likely just as useful for JITed code (if not, we'll change it).
StackMaps and Patchpoints are still marked as experimental, and so this support
is doubly experimental. So go ahead and experiment!
llvm-svn: 225808
This name is less descriptive, but it sort of puts things in the
'llvm.frame...' namespace, relating it to frameallocate and
frameaddress. It also avoids using "allocate" and "allocation" together.
llvm-svn: 225752
These intrinsics allow multiple functions to share a single stack
allocation from one function's call frame. The function with the
allocation may only perform one allocation, and it must be in the entry
block.
Functions accessing the allocation call llvm.recoverframeallocation with
the function whose frame they are accessing and a frame pointer from an
active call frame of that function.
These intrinsics are very difficult to inline correctly, so the
intention is that they be introduced rarely, or at least very late
during EH preparation.
Reviewers: echristo, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D6493
llvm-svn: 225746
Propagate whether `MDNode`s are 'distinct' through the other types of IR
(assembly and bitcode). This adds the `distinct` keyword to assembly.
Currently, no one actually calls `MDNode::getDistinct()`, so these nodes
only get created for:
- self-references, which are never uniqued, and
- nodes whose operands are replaced that hit a uniquing collision.
The concept of distinct nodes is still not quite first-class, since
distinct-ness doesn't yet survive across `MapMetadata()`.
Part of PR22111.
llvm-svn: 225474
In order to make comdats always explicit in the IR, we decided to make
the syntax a bit more compact for the case of a GlobalObject in a
comdat with the same name.
Just dropping the $name causes problems for
@foo = globabl i32 0, comdat
$bar = comdat ...
and
declare void @foo() comdat
$bar = comdat ...
So the syntax is changed to
@g1 = globabl i32 0, comdat($c1)
@g2 = globabl i32 0, comdat
and
declare void @foo() comdat($c1)
declare void @foo() comdat
llvm-svn: 225302
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
llvm-svn: 224257
We were already requiring 2.5, which meant that people on old linux distros
had to upgrade anyway.
Requiring python 2.6 will make supporting 3.X easier as we can use the 3.X
exception syntax.
According to the discussion on llvmdev, there is not much value is requiring
just 2.6, we may as well just require 2.7.
llvm-svn: 224129
Introduce the ``llvm.instrprof_increment`` intrinsic and the
``-instrprof`` pass. These provide the infrastructure for writing
counters for profiling, as in clang's ``-fprofile-instr-generate``.
The implementation of the instrprof pass is ported directly out of the
CodeGenPGO classes in clang, and with the followup in clang that rips
that code out to use these new intrinsics this ends up being NFC.
Doing the instrumentation this way opens some doors in terms of
improving the counter performance. For example, this will make it
simple to experiment with alternate lowering strategies, and allows us
to try handling profiling specially in some optimizations if we want
to.
Finally, this drastically simplifies the frontend and puts all of the
lowering logic in one place.
llvm-svn: 223672
a description of how to add debug information using DWARF and
DIBuilder to the language.
Thanks to David Blaikie for his assistance with this tutorial.
llvm-svn: 223671
Patch by Ben Gamari!
This redefines the `prefix` attribute introduced previously and
introduces a `prologue` attribute. There are a two primary usecases
that these attributes aim to serve,
1. Function prologue sigils
2. Function hot-patching: Enable the user to insert `nop` operations
at the beginning of the function which can later be safely replaced
with a call to some instrumentation facility
3. Runtime metadata: Allow a compiler to insert data for use by the
runtime during execution. GHC is one example of a compiler that
needs this functionality for its tables-next-to-code functionality.
Previously `prefix` served cases (1) and (2) quite well by allowing the user
to introduce arbitrary data at the entrypoint but before the function
body. Case (3), however, was poorly handled by this approach as it
required that prefix data was valid executable code.
Here we redefine the notion of prefix data to instead be data which
occurs immediately before the function entrypoint (i.e. the symbol
address). Since prefix data now occurs before the function entrypoint,
there is no need for the data to be valid code.
The previous notion of prefix data now goes under the name "prologue
data" to emphasize its duality with the function epilogue.
The intention here is to handle cases (1) and (2) with prologue data and
case (3) with prefix data.
References
----------
This idea arose out of discussions[1] with Reid Kleckner in response to a
proposal to introduce the notion of symbol offsets to enable handling of
case (3).
[1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html
Test Plan: testsuite
Differential Revision: http://reviews.llvm.org/D6454
llvm-svn: 223189
This is the fourth and final patch in the statepoint series. It contains the documentation for the statepoint intrinsics and their usage.
There's definitely still room to improve the documentation here, but I wanted to get this landed so it was available for others. There will likely be a series of small cleanup changes over the next few weeks as we work to clarify and revise the documentation. If you have comments or questions, please feel free to discuss them either in this commit thread, the original review thread, or on llvmdev. Comments are more than welcome.
Reviewed by: atrick, ributzka
Differential Revision: http://reviews.llvm.org/D5683
llvm-svn: 223143
Clarify the wording around !invariant.load to properly reflect the semantics of such loads with respect to control dependence and location lifetime. To the best of my knowledge, the revised wording respects the actual implementation and understanding of issues involved highlighted in the recent 'Optimization hints for "constant" loads' thread on LLVMDev.
In particular, I'm aiming for the following results:
- To clarify that an invariant.load can fault and must respect control dependence. In particular, it is not sound to unconditionally pull an invariant load out of a loop if that loop would potentially never execute.
- To clarify that the invariant nature of a given pointer does not preclude the modification of that location through a pointer which is unrelated to the load operand. In particular, initializing a location and then passing a pointer through an opaque intrinsic which produces a new unrelated pointer, should behave as expected provided that the intrinsic is memory dependent on the initializing store.
- To clarify that storing a value to an invariant location is defined. It can not, for example, be considered unreachable. The value stored can be assumed to be equal to the value of any previous (or following!) invariant load, but the store itself is defined.
I recommend that anyone interested in using !invariant.load, or optimizing for them, read over the discussion in the review thread. A number of motivating examples are discussed.
Differential Revision: http://reviews.llvm.org/D6346
llvm-svn: 222700
The previous description of the noalias attribute did not accurately specify
the implemented semantics, and the terminology used differed unnecessarily
from that used by the C specification to define the semantics of restrict. For
the argument attribute, the semantics can be precisely specified in terms of
objects accessed through pointers based on the arguments, and this is now what
is done.
Saying that the semantics are 'slightly weaker' than that provided by C99
restrict is not really useful without further elaboration, so that has been
removed from the sentence.
noalias on a return value is really used to mean that the function is
malloc-like (and, in fact, we use this attribute to represent
__attribute__((malloc)) in Clang), and this is a stronger guarantee than that
provided by restrict (because it is a property of the pointed-to memory region,
not just a guarantee on object access). Clarifying this is relevant to fixing
(and was motivated by the discussion on) PR21556.
llvm-svn: 222497
This change makes use of the new "job pool" capability in cmake 3.0
with ninja generator to allow limiting the number of concurrent jobs
of a certain type.
llvm-svn: 222341
- Make CallGraphSCCPass's paragraph about doFinalization refer to
runOnSCC instead of runOnFunction, since that's what it's about.
- Fix a reference in the FunctionPass paragraph.
llvm-svn: 222222
The given example was overflowing its alloca and segfaulting if actually run on
x86, so it's a good idea to provide something that works there too.
Patch by Ramkumar Ramachandra.
llvm-svn: 221077
These are named following the IEEE-754 names for these
functions, rather than the libm fmin / fmax to avoid
possible ambiguities. Some languages may implement something
resembling fmin / fmax which return NaN if either operand is
to propagate errors. These implement the IEEE-754 semantics
of returning the other operand if either is a NaN representing
missing data.
llvm-svn: 220341
The newly introduced 'nonnull' metadata is analogous to existing 'nonnull' attributes, but applies to load instructions rather than call arguments or returns. Long term, it would be nice to combine these into a single construct. The value of the load is allowed to vary between successive loads, but null is not a valid value to be loaded by any load marked nonnull.
Reviewed by: Hal Finkel
Differential Revision: http://reviews.llvm.org/D5220
llvm-svn: 220240
llvm-symbolizer will consult one of the .dSYM paths passed via -dsym-hint
if it fails to find the .dSYM bundle at the default location.
llvm-svn: 220004
Rather than define our own standards, we adopt a set of best practices that
are already in use by the Go community.
Differential Revision: http://reviews.llvm.org/D5761
llvm-svn: 219646
Summary:
We currently emit an DW_AT_APPLE_property_attribute with a value that is a
bitfield describing the various attributes applied to an ObjectiveC property.
While trying to add testing to one of my dwarfdump patches that would pretty
print that, I realized this information looks totally broken and has maybe
never been correct.
As with every DWARF info, we have some enum in Dwarf.h that describes this
attribute (enum ApplePropertyAttributes). It seems however that the attribute
value is set from another definition of these flags in Sema/DeclSpec.h (enum
ObjCPropertyAttributeKind). And these 2 enums aren't in sync.
This patch updates the Dwarf.h values to the ones we are (and have been for
a very long time) emitting. We change some publicly (and even documented
in SourceLevelDebugging.rst) values, but I doubt this could be an issue as
the information has been wrong for so long...
Reviewers: echristo, dblaikie, aprantl
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5653
llvm-svn: 219311
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 219010
Summary:
I changed various bits of the compilation of atomics recently, and forgot
updating the documentation. This patch just brings it up to date.
Test Plan: no change to the code
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5590
llvm-svn: 218937
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 218914
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
llvm-svn: 218778
This format is simply a regular object file with the bitcode stored in a
section named ".llvmbc", plus any number of other (non-allocated) sections.
One immediate use case for this is to accommodate compilation processes
which expect the object file to contain metadata in non-allocated sections,
such as the ".go_export" section used by some Go compilers [1], although I
imagine that in the future we could consider compiling parts of the module
(such as large non-inlinable functions) directly into the object file to
improve LTO efficiency.
[1] http://golang.org/doc/install/gccgo#Imports
Differential Revision: http://reviews.llvm.org/D4371
llvm-svn: 218078
Summary:
They were used in the 'Module Structure' example but weren't otherwise
documented.
Credit to Reed Kotler for noticing.
Reviewers: hans
Reviewed By: hans
Subscribers: hans, llvm-commits
Differential Revision: http://reviews.llvm.org/D5191
llvm-svn: 217583
I've been assuming chain operands were always the first operand,
since the documentation says this. I was confused about why they
were missing after instruction selection. Apparently the convention
changes to using the last operand for MachineSDNodes and I've never
noticed before.
llvm-svn: 216934
Summary:
There is no functionality change here except in the way we assemble and
dump musttail calls in variadic functions. There's really no need to
separate out the bits for musttail and "is forwarding varargs" on call
instructions. A musttail call by definition has to forward the ellipsis
or it would fail verification.
Reviewers: chandlerc, nlewycky
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4892
llvm-svn: 216423
Somewhat unnoticed in the original implementation of discriminators, but
it could cause instructions to end up in new, small,
DW_TAG_lexical_blocks due to the use of DILexicalBlock to track
discriminator changes.
Instead, use DILexicalBlockFile which we already use to track file
changes without introducing new scopes, so it works well to track
discriminator changes in the same way.
llvm-svn: 216239
Implement `uselistorder` and `uselistorder_bb` assembly directives,
which allow the use-list order to be recovered when round-tripping to
assembly.
This is the bulk of PR20515.
llvm-svn: 216025
I should have included this as part of r215986, which worked around this
corner by changing ArrayRef::equals() not to use std::equal. Alas.
llvm-svn: 215988
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
llvm-svn: 215154
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
llvm-svn: 215111
Summary:
This patch add a --show-xfail flag. If this flag is specified then each xfail test will be printed to output.
When it is not given xfail tests are ignored. Ignoring xfail tests is the current behavior.
This flag is meant to mirror the --show-unsupported flag that was recently added.
Reviewers: ddunbar, EricWF
Reviewed By: EricWF
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4750
llvm-svn: 214609
variables (for example, by-value struct arguments passed in registers, or
large integer values split across several smaller registers).
On the IR level, this adds a new type of complex address operation OpPiece
to DIVariable that describes size and offset of a variable fragment.
On the DWARF emitter level, all pieces describing the same variable are
collected, sorted and emitted as DWARF expressions using the DW_OP_piece
and DW_OP_bit_piece operators.
http://reviews.llvm.org/D3373
rdar://problem/15928306
What this patch doesn't do / Future work:
- This patch only adds the backend machinery to make this work, patches
that change SROA and SelectionDAG's type legalizer to actually create
such debug info will follow. (http://reviews.llvm.org/D2680)
- Making the DIVariable complex expressions into an argument of dbg.value
will reduce the memory footprint of the debug metadata.
- The sorting/uniquing of pieces should be moved into DebugLocEntry,
to facilitate the merging of multi-piece entries.
llvm-svn: 214576
Users keep emailing us about the difficulties of getting LD_LIBRARY_PATH
into their environment, which should be completely unecessary. Try to
strengthen the rpath recommentation by putting in an example cmake
invocation.
Speaking of which, we might want to make CMake the recommended build
system in GettingStarted.html.
llvm-svn: 214565
Before this patch we had
@a = weak global ...
but
@b = alias weak ...
The patch changes aliases to look more like global variables.
Looking at some really old code suggests that the reason was that the old
bison based parser had a reduction for alias linkages and another one for
global variable linkages. Putting the alias first avoided the reduce/reduce
conflict.
The days of the old .ll parser are long gone. The new one parses just "linkage"
and a later check is responsible for deciding if a linkage is valid in a
given context.
llvm-svn: 214355
Someone asked about this on IRC the other day, and I couldn't
find the magic prefix documented anywhere.
Differential Revision: http://reviews.llvm.org/D4728
llvm-svn: 214329