Summary:
This patch adds two new diagnostics, which are off by default:
**-Wreturn-std-move**
This diagnostic is enabled by `-Wreturn-std-move`, `-Wmove`, or `-Wall`.
Diagnose cases of `return x` or `throw x`, where `x` is the name of a local variable or parameter, in which a copy operation is performed when a move operation would have been available. The user probably expected a move, but they're not getting a move, perhaps because the type of "x" is different from the return type of the function.
A place where this comes up in the wild is `stdext::inplace_function<Sig, N>` which implements conversion via a conversion operator rather than a converting constructor; see https://github.com/WG21-SG14/SG14/issues/125#issue-297201412
Another place where this has come up in the wild, but where the fix ended up being different, was
try { ... } catch (ExceptionType ex) {
throw ex;
}
where the appropriate fix in that case was to replace `throw ex;` with `throw;`, and incidentally to catch by reference instead of by value. (But one could contrive a scenario where the slicing was intentional, in which case throw-by-move would have been the appropriate fix after all.)
Another example (intentional slicing to a base class) is dissected in https://github.com/accuBayArea/Slides/blob/master/slides/2018-03-07.pdf
**-Wreturn-std-move-in-c++11**
This diagnostic is enabled only by the exact spelling `-Wreturn-std-move-in-c++11`.
Diagnose cases of "return x;" or "throw x;" which in this version of Clang *do* produce moves, but which prior to Clang 3.9 / GCC 5.1 produced copies instead. This is useful in codebases which care about portability to those older compilers.
The name "-in-c++11" is not technically correct; what caused the version-to-version change in behavior here was actually CWG 1579, not C++14. I think it's likely that codebases that need portability to GCC 4.9-and-earlier may understand "C++11" as a colloquialism for "older compilers." The wording of this diagnostic is based on feedback from @rsmith.
**Discussion**
Notice that this patch is kind of a negative-space version of Richard Trieu's `-Wpessimizing-move`. That diagnostic warns about cases of `return std::move(x)` that should be `return x` for speed. These diagnostics warn about cases of `return x` that should be `return std::move(x)` for speed. (The two diagnostics' bailiwicks do not overlap: we don't have to worry about a `return` statement flipping between the two states indefinitely.)
I propose to write a paper for San Diego that would relax the implicit-move rules so that in C++2a the user //would// see the moves they expect, and the diagnostic could be re-worded in a later version of Clang to suggest explicit `std::move` only "in C++17 and earlier." But in the meantime (and/or forever if that proposal is not well received), this diagnostic will be useful to detect accidental copy operations.
Reviewers: rtrieu, rsmith
Reviewed By: rsmith
Subscribers: lebedev.ri, Rakete1111, rsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D43322
Patch by Arthur O'Dwyer.
llvm-svn: 329914
C++ [over.built] p4:
"For every pair (T, VQ), where T is an arithmetic type other than bool, and VQ is either volatile or empty, there exist candidate operator functions of the form
VQ T& operator--(VQ T&);
T operator--(VQ T&, int);
"
The bool type is in position LastPromotedIntegralType in BuiltinOperatorOverloadBuilder::getArithmeticType::ArithmeticTypes, but addPlusPlusMinusMinusArithmeticOverloads() was expecting it at position 0.
Differential Revision: https://reviews.llvm.org/D44988
rdar://problem/34255516
llvm-svn: 329804
an APValue and retrieve it from map Temporaries.
The version number is needed when a single AST node is visited multiple
times and is used to create APValues that are required to be distinct
from each other (for example, MaterializeTemporaryExprs in default
arguments and VarDecls in loops).
rdar://problem/36505742
Differential Revision: https://reviews.llvm.org/D42776
llvm-svn: 329671
Summary:
Currently clang doesn't do qualified lookup when building indirect field decl references. This causes ambiguity when the field is in a base class to which there are multiple valid paths even though a qualified name is used.
For example:
```
class B {
protected:
int i;
union { int j; };
};
class X : public B { };
class Y : public B { };
class Z : public X, public Y {
int a() { return X::i; } // works
int b() { return X::j; } // fails
};
```
Reviewers: rsmith, aaron.ballman, rjmccall
Reviewed By: rjmccall
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D45411
llvm-svn: 329521
Summary:
Currently clang doesn't do qualified lookup when building indirect field decl references. This causes ambiguity when the field is in a base class to which there are multiple valid paths even though a qualified name is used.
For example:
```
class B {
protected:
int i;
union { int j; };
};
class X : public B { };
class Y : public B { };
class Z : public X, public Y {
int a() { return X::i; } // works
int b() { return X::j; } // fails
};
```
Reviewers: rsmith, aaron.ballman, rjmccall
Reviewed By: rjmccall
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D45411
llvm-svn: 329519
Summary:
Currently Clang fails to propagate qualifiers from the `CXXThisExpr` to the rebuilt `FieldDecl` for IndirectFieldDecls. For example:
```
template <class T> struct Foo {
struct { int x; };
int y;
void foo() const {
static_assert(__is_same(int const&, decltype((y))));
static_assert(__is_same(int const&, decltype((x)))); // assertion fails
}
};
template struct Foo<int>;
```
The fix is to delegate rebuilding of the MemberExpr to `BuildFieldReferenceExpr` which correctly propagates the qualifiers.
Reviewers: rsmith, lebedev.ri, aaron.ballman, bkramer, rjmccall
Reviewed By: rjmccall
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D45412
llvm-svn: 329517
Summary:
This has just bit me, so i though it would be nice to avoid that next time :)
Motivational case:
https://godbolt.org/g/cq9UNk
Basically, it's likely to happen if you don't like shadowing issues,
and use `-Wshadow` and friends. And it won't be diagnosed by clang.
The reason is, these self-assign diagnostics only work for builtin assignment
operators. Which makes sense, one could have a very special operator=,
that does something unusual in case of self-assignment,
so it may make sense to not warn on that.
But while it may be intentional in some cases, it may be a bug in other cases,
so it would be really great to have some diagnostic about it...
Reviewers: aaron.ballman, rsmith, rtrieu, nikola, rjmccall, dblaikie
Reviewed By: rjmccall
Subscribers: EricWF, lebedev.ri, thakis, Quuxplusone, cfe-commits
Differential Revision: https://reviews.llvm.org/D44883
llvm-svn: 329493
Found via codespell -q 3 -I ../clang-whitelist.txt
Where whitelist consists of:
archtype
cas
classs
checkk
compres
definit
frome
iff
inteval
ith
lod
methode
nd
optin
ot
pres
statics
te
thru
Patch by luzpaz! (This is a subset of D44188 that applies cleanly with a few
files that have dubious fixes reverted.)
Differential revision: https://reviews.llvm.org/D44188
llvm-svn: 329399
layout" rules.
The new rules say that a standard-layout struct has its first non-static
data member and all base classes at offset 0, and consider a class to
not be standard-layout if that would result in multiple subobjects of a
single type having the same address.
We track "is C++11 standard-layout class" separately from "is
standard-layout class" so that the ABIs that need this information can
still use it.
Differential Revision: https://reviews.llvm.org/D45176
llvm-svn: 329332
Summary:
https://reviews.llvm.org/rL325291 implemented Coroutines TS N4723
section [dcl.fct.def.coroutine]/7, but it performed lookup of allocator
functions within both the global and class scope, whereas the specified
behavior is to perform lookup for custom allocators within just the
class scope.
To fix, add parameters to the `Sema::FindAllocationFunctions` function
such that it can be used to lookup allocators in global scope,
class scope, or both (instead of just being able to look up in just global
scope or in both global and class scope). Then, use those parameters
from within the coroutine Sema.
This incorrect behavior had the unfortunate side-effect of causing the
bug https://bugs.llvm.org/show_bug.cgi?id=36578 (or at least the reports
of that bug in C++ programs). That bug would occur for any C++ user with
a coroutine frame that took a single pointer argument, since it would
then find the global placement form `operator new`, described in the
C++ standard 18.6.1.3.1. This patch prevents Clang from generating code
that triggers the LLVM assert described in that bug report.
Test Plan: `check-clang`
Reviewers: GorNishanov, eric_niebler, lewissbaker
Reviewed By: GorNishanov
Subscribers: EricWF, cfe-commits
Differential Revision: https://reviews.llvm.org/D44552
llvm-svn: 328949
The diagnostic system for Clang can already handle many AST nodes. Instead
of converting them to strings first, just hand the AST node directly to
the diagnostic system and let it handle the output. Minor changes in some
diagnostic output.
llvm-svn: 328688
When SemaCoroutine looks for await_resume, it means it. No need for helpful: "Did you mean await_ready?" messages.
Fixes PR33477 and a couple of FIXMEs in test/SemaCXX/coroutines.cpp
llvm-svn: 328663
Summary:
Currently an invalid source range is generated for the member call expressions of `co_await`. The end location of the call expression is the `co_await` token loc, while the start is the location of the operand. This causes crashes when the source range is used to produce diagnostics.
This patch fixes the issues by using the expression location instead of the token location when building the member calls.
Reviewers: GorNishanov, rsmith, vsk, aaron.ballman
Reviewed By: vsk
Subscribers: cfe-commits, modocache
Differential Revision: https://reviews.llvm.org/D44915
llvm-svn: 328606
Previously, anytime the result of the resume expression in
operator co_await was unused, a warning was generated. This
patch fixes the issue by only generating the unused result warning
if calling `await_resume()` would also generate a warning.
llvm-svn: 328602
Summary: Rewrites -Winfinite-recursion to remove the state dictionary and explore paths in loops - especially infinite loops. The new check now detects recursion in loop bodies dominated by a recursive call.
Reviewers: rsmith, rtrieu
Reviewed By: rtrieu
Subscribers: lebedev.ri, cfe-commits
Differential Revision: https://reviews.llvm.org/D43737
llvm-svn: 328173
Summary:
Libc++'s default allocator uses `__builtin_operator_new` and `__builtin_operator_delete` in order to allow the calls to new/delete to be ellided. However, libc++ now needs to support over-aligned types in the default allocator. In order to support this without disabling the existing optimization Clang needs to support calling the aligned new overloads from the builtins.
See llvm.org/PR22634 for more information about the libc++ bug.
This patch changes `__builtin_operator_new`/`__builtin_operator_delete` to call any usual `operator new`/`operator delete` function. It does this by performing overload resolution with the arguments passed to the builtin to determine which allocation function to call. If the selected function is not a usual allocation function a diagnostic is issued.
One open issue is if the `align_val_t` overloads should be considered "usual" when `LangOpts::AlignedAllocation` is disabled.
In order to allow libc++ to detect this new behavior the value for `__has_builtin(__builtin_operator_new)` has been updated to `201802`.
Reviewers: rsmith, majnemer, aaron.ballman, erik.pilkington, bogner, ahatanak
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D43047
llvm-svn: 328134
More generally, this permits a template to be specialized in any scope in which
it could be defined, so this also supersedes DR44 and DR374 (the latter of
which we previously only implemented in C++11 mode onwards due to unclarity as
to whether it was a DR).
llvm-svn: 327705
r327343 changed the handling for CallExpr in a CFG, which prevented lookups for
CallExpr while other Stmt kinds still worked. This change carries over the
necessary bits from Stmt function to CallExpr function.
llvm-svn: 327593
Summary:
Let's suppose the `-Weverything` is passed.
Given code like
```
void F() {}
;
```
If the code is compiled with `-std=c++03`, it would diagnose that extra sema:
```
<source>:2:1: warning: extra ';' outside of a function is a C++11 extension [-Wc++11-extra-semi]
;
^~
```
If the code is compiled with `-std=c++11`, it also would diagnose that extra sema:
```
<source>:2:1: warning: extra ';' outside of a function is incompatible with C++98 [-Wc++98-compat-pedantic]
;
^~
```
But, let's suppose the C++11 or higher is used, and the used does not care
about `-Wc++98-compat-pedantic`, so he disables that diagnostic.
And that silences the complaint about extra `;` too.
And there is no way to re-enable that particular diagnostic, passing `-Wextra-semi` does nothing...
Now, there is also a related `no newline at end of file` diagnostic, which is also emitted by `-Wc++98-compat-pedantic`
```
<source>:2:2: warning: C++98 requires newline at end of file [-Wc++98-compat-pedantic]
;
^
```
But unlike the previous case, if `-Wno-c++98-compat-pedantic` is passed, that diagnostic stays displayed:
```
<source>:2:2: warning: no newline at end of file [-Wnewline-eof]
;
^
```
This diff refactors the code so `-Wc++98-compat-extra-semi` can be re-enabled, after the `-Wc++98-compat-pedantic` was disabled.
This seems ugly, but there does not seem to be any saner way.
Testing: `$ ninja check-clang`
Reviewers: rsmith, rtrieu, aaron.ballman
Reviewed By: aaron.ballman
Subscribers: jordan_rose, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D43162
llvm-svn: 327558
Summary:
This is PR36536.
There are a few ways to reach Sema::ActOnStartOfFunctionDef with a null
Decl. Currently, the parser continues on to attempt to parse the
statements in the function body without pushing a function scope or
declaration context. However, lots of statement parsing logic relies on
getCurFunction() returning something reasonable. It turns out that
getCurFunction() will never return null today because of an optimization
where Sema pre-allocates one FunctionScopeInfo and reuses it when
possible. This goes wrong when something inside the function body causes
us to push another function scope, such as requiring an implicit
definition of a special member function. Reusing the state clears it
out, which will lead to bugs. In PR36536, we found that the SwitchStack
gets unbalanced, because we push a switch, clear out the stack, and then
try to pop a switch that isn't there.
As a follow-up, I plan to move the pre-allocated FunctionScopeInfo out
of the FunctionScopes stack. This means the FunctionScopes stack will
often be empty, and callers of getCurFunction() will need to check for
null.
Reviewers: thakis
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D43980
llvm-svn: 326926
Current implementation of `FunctionDecl::isDefined` does not take into
account redeclarations that do not have bodies, but the bodies can be
instantiated from corresponding templated definition. This behavior does
not allow to detect function redefinition in the cases where friend
functions is defined in class templates. For instance, the code:
```
template<typename T> struct X { friend void f() {} };
X<int> xi;
void f() {}
```
compiles successfully but must fail due to redefinition of `f`. The
declaration of the friend `f` is created when the containing template
`X` is instantiated, but it does not have a body as per 14.5.4p4
because `f` is not odr-used.
With this change the function `Sema::CheckForFunctionRedefinition`
considers functions with uninstantiated bodies as definitions.
Differential Revision: https://reviews.llvm.org/D30170
llvm-svn: 326419
When indirect field is initialized with another field, you have
MemberExpr with CXXThisExpr that corresponds to the field's immediate
anonymous parent. But 'this' was referring to the non-anonymous parent.
So when we were building LValue Designator, it was incorrect as it had
wrong starting point. Usage of such designator would cause unexpected
APValue changes and crashes.
The fix is in adjusting 'this' for indirect fields from non-anonymous
parent to the field's immediate parent.
Discovered by OSS-Fuzz:
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=4985
rdar://problem/36359187
Reviewers: rsmith, efriedma
Reviewed By: rsmith
Subscribers: cfe-commits, jkorous-apple
Differential Revision: https://reviews.llvm.org/D42498
llvm-svn: 325997
The tests that failed on a windows host have been fixed.
Original message:
Start setting dso_local for COFF.
With this there are still some GVs where we don't set dso_local
because setGVProperties is never called. I intend to fix that in
followup commits. This is just the bare minimum to teach
shouldAssumeDSOLocal what it should do for COFF.
llvm-svn: 325940
expressions, if their lifetime began during the evaluation of the expression.
This is technically not allowed in C++11, though we could consider permitting
it there too, as an extension.
llvm-svn: 325663
Reimplement the "noexcept function actually throws" warning to properly handle
nested try-blocks. In passing, change 'throw;' handling to treat any enclosing
try block as being sufficient to suppress the warning rather than requiring a
'catch (...)'; the warning is intended to be conservatively-correct.
llvm-svn: 325545
There were a few issues previously with the target
attribute diagnostics implementation that lead to the
attribute being added to the AST despite having an error
in it.
This patch changes that, and adds a test to ensure it
does not get added to the AST.
Differential Revision: https://reviews.llvm.org/D43359
llvm-svn: 325364
Summary:
Fix a test failure on ARM hosts that was caused by a difference in the type of
size_t, by using a target-agnostic definiton.
Test Plan:
```
clang -cc1 -internal-isystem build/lib/clang/7.0.0/include -nostdsysteminc \
-std=c++14 -fcoroutines-ts -verify clang/test/SemaCXX/coroutines.cpp \
-fcxx-exceptions -fexceptions \
-triple armeb-none-eabi
```
llvm-svn: 325342
This broke the Chromium build, see https://crbug.com/813017
> accessibility of a class member.
>
> This fixes PR32898.
>
> rdar://problem/33737747
>
> Differential revision: https://reviews.llvm.org/D36918
llvm-svn: 325335
Summary:
Depends on https://reviews.llvm.org/D42605.
An implementation of the behavior described in `[dcl.fct.def.coroutine]/7`:
when a promise type overloads `operator new` using a "placement new"
that takes the same argument types as the coroutine function, that
overload is used when allocating the coroutine frame.
Simply passing references to the coroutine function parameters directly
to `operator new` results in invariant violations in LLVM's coroutine
splitting pass, so this implementation modifies Clang codegen to
produce allocator-specific alloc/store/loads for each parameter being
forwarded to the allocator.
Test Plan: `check-clang`
Reviewers: rsmith, GorNishanov, eric_niebler
Reviewed By: GorNishanov
Subscribers: lewissbaker, EricWF, cfe-commits
Differential Revision: https://reviews.llvm.org/D42606
llvm-svn: 325291
This patch fixes clang to not consider braced initializers for
aggregate elements of arrays to be potentially dependent on the
indices of the initialized elements. Resolves bug 18978:
initialize a large static array = clang oom?
https://bugs.llvm.org/show_bug.cgi?id=18978
Differential Revision: https://reviews.llvm.org/D43187
llvm-svn: 325120
When we synthesize an implicit inner initializer list when analyzing an outer
initializer list, we add it to the outer list immediately, and then fill in the
inner list. This gives the outer list no chance to update its *-dependence bits
with those of the completed inner list. To fix this, re-add the inner list to
the outer list once it's completed.
Note that we do not recompute the *-dependence bits from scratch when we
complete an outer list; this would give the wrong result for the case where a
designated initializer overwrites a dependent initializer with a non-dependent
one. The resulting list in that case should still be dependent, even though all
traces of the dependence were removed from the semantic form.
llvm-svn: 324537
Summary:
Clang incorrectly reports empty unions as having a unique object representation. However, this is not correct since `sizeof(EmptyUnion) == 1` AKA it has 8 bits of padding. Therefore it should be treated the same as an empty struct and report `false`.
@erichkeane also suggested this fix should be merged into the 6.0 release branch, so the initial release of `__has_unique_object_representations` is as bug-free as possible.
Reviewers: erichkeane, rsmith, aaron.ballman, majnemer
Reviewed By: erichkeane
Subscribers: cfe-commits, erichkeane
Differential Revision: https://reviews.llvm.org/D42863
llvm-svn: 324134
Summary:
Use corutine function arguments to initialize a promise type, but only
if the promise type defines a constructor that takes those arguments.
Otherwise, fall back to the default constructor.
Test Plan: check-clang
Reviewers: rsmith, GorNishanov, eric_niebler
Reviewed By: GorNishanov
Subscribers: toby-allsopp, lewissbaker, EricWF, cfe-commits
Differential Revision: https://reviews.llvm.org/D41820
llvm-svn: 323381
Both are related to handling anonymous structures.
* clang didn't handle () around an anonymous struct variable.
* clang also crashed on syntax errors that could lead to other
syntactic constructs following the declaration of an
anonymous struct. While the code is invalid, that's not
a good reason to panic compiler.
Differential Revision: https://reviews.llvm.org/D41788
llvm-svn: 322742
When parsing C++ type construction expressions with list initialization,
forward the locations of the braces to Sema.
Without these locations, the code coverage pass crashes on the given test
case, because the pass relies on getLocEnd() returning a valid location.
Here is what this patch does in more detail:
- Forwards init-list brace locations to Sema (ParseExprCXX),
- Builds an InitializationKind with these locations (SemaExprCXX), and
- Uses these locations for constructor initialization (SemaInit).
The remaining changes fall out of introducing a new overload for
creating direct-list InitializationKinds.
Testing: check-clang, and a stage2 coverage-enabled build of clang with
asserts enabled.
Differential Revision: https://reviews.llvm.org/D41921
llvm-svn: 322729
We were trying to emit a diag::err_bad_multiversion_option diagnostic,
which expects an int as its first argument, with a string argument. As
it happens, the string `Feature` that was causing this was shadowing an
int `Feature` from the surrounding scope. :)
llvm-svn: 322530