The main advantages here are way better heuristics, taking into account not
just loop depth but also __builtin_expect and other static heuristics and will
eventually learn how to use profile info. Most of the work in this patch is
pushing the MachineBlockFrequencyInfo analysis into the right places.
This is good for a 5% speedup on zlib's deflate (x86_64), there were some very
unfortunate spilling decisions in its hottest loop in longest_match(). Other
benchmarks I tried were mostly neutral.
This changes register allocation in subtle ways, update the tests for it.
2012-02-20-MachineCPBug.ll was deleted as it's very fragile and the instruction
it looked for was gone already (but the FileCheck pattern picked up unrelated
stuff).
llvm-svn: 184105
Delete the alternative implementation in LiveIntervalAnalysis.
These functions computed the same thing, but SplitAnalysis caches the
result.
llvm-svn: 147911
When a back-copy is hoisted to the nearest common dominator, keep
looking up the dominator tree for a less loopy dominator, and place the
back-copy there instead.
Don't do this when a single existing back-copy dominates all the others.
Assume the client knows what he is doing, and keep the dominating
back-copy.
This prevents us from hoisting back-copies into loops in most cases. If
a value is defined in a loop with multiple exits, we may still hoist
back-copies into that loop. That is the speed/size tradeoff.
llvm-svn: 139698
When a ParentVNI maps to multiple defs in a new interval, its live range
may still be derived directly from RegAssign by transferValues().
On the other hand, when instructions have been rematerialized or
hoisted, it may be necessary to completely recompute live ranges using
LiveRangeCalc::extend() to all uses.
Use a bit in the value map to indicate that a live range must be
recomputed. Rename markComplexMapped() to forceRecompute().
This fixes some live range verification errors when
-split-spill-mode=size hoists back-copies by recomputing source ranges
when RegAssign kills can't be moved.
llvm-svn: 139660
Whenever the complement interval is defined by multiple copies of the
same value, hoist those back-copies to the nearest common dominator.
This ensures that at most one copy is inserted per value in the
complement inteval, and no phi-defs are needed.
llvm-svn: 139651
This function is used to flag values where the complement interval may
overlap other intervals. Call it from overlapIntv, and use the flag to
fully recompute those live ranges in transferValues().
llvm-svn: 139612
The complement interval may overlap the other intervals created, so use
a separate LiveRangeCalc instance to compute its live range.
A LiveRangeCalc instance can only be shared among non-overlapping
intervals.
llvm-svn: 139603
SplitKit will soon need two copies of these data structures, and the
algorithms will also be useful when LiveIntervalAnalysis becomes
independent of LiveVariables.
llvm-svn: 139572
SplitKit always computes a complement live range to cover the places
where the original live range was live, but no explicit region has been
allocated.
Currently, the complement live range is created to be as small as
possible - it never overlaps any of the regions. This minimizes
register pressure, but if the complement is going to be spilled anyway,
that is not very important. The spiller will eliminate redundant
spills, and hoist others by making the spill slot live range overlap
some of the regions created by splitting. Stack slots are cheap.
This patch adds the interface to enable spill modes in SplitKit. In
spill mode, SplitKit will assume that the complement is going to spill,
so it will allow it to overlap regions in order to avoid back-copies.
By doing some of the spiller's work early, the complement live range
becomes simpler. In some cases, it can become much simpler because no
extra PHI-defs are required. This will speed up both splitting and
spilling.
This is only the interface to enable spill modes, no implementation yet.
llvm-svn: 139500
Normally, we don't create a live range for a single instruction in a
basic block, the spiller does that anyway. However, when splitting a
live range that belongs to a proper register sub-class, inserting these
extra COPY instructions completely remove the constraints from the
remainder interval, and it may be allocated from the larger super-class.
The spiller will mop up these small live ranges if we end up spilling
anyway. It calls them snippets.
llvm-svn: 136989
This is either an invalid SlotIndex, or valno->def for the first value
defined inside the block. PHI values are not counted as defined inside
the block.
The FirstDef field will be used when estimating the cost of spilling
around a block.
llvm-svn: 136736
This gets rid of some of the gory splitting details in RAGreedy and
makes them available to future SplitKit clients.
Slightly generalize the functionality to support multi-way splitting.
Specifically, SplitEditor::splitLiveThroughBlock() supports switching
between different register intervals in a block.
llvm-svn: 135307
This patch will sometimes choose live range split points next to
interference instead of always splitting next to a register point. That
means spill code can now appear almost anywhere, and it was necessary
to fix code that didn't expect that.
The difficult places were:
- Between a CALL returning a value on the x87 stack and the
corresponding FpPOP_RETVAL (was FpGET_ST0). Probably also near x87
inline assembly, but that didn't actually show up in testing.
- Between a CALL popping arguments off the stack and the corresponding
ADJCALLSTACKUP.
Both are fixed now. The only place spill code can't appear is after
terminators, see SplitAnalysis::getLastSplitPoint.
Original commit message:
Rewrite RAGreedy::splitAroundRegion, now with cool ASCII art.
This function has to deal with a lot of special cases, and the old
version got it wrong sometimes. In particular, it would sometimes leave
multiple uses in the stack interval in a single block. That causes bad
code with multiple reloads in the same basic block.
The new version handles block entry and exit in a single pass. It first
eliminates all the easy cases, and then goes on to create a local
interval for the blocks with difficult interference. Previously, we
would only create the local interval for completely isolated blocks.
It can happen that the stack interval becomes completely empty because
we could allocate a register in all edge bundles, and the new local
intervals deal with the interference. The empty stack interval is
harmless, but we need to remove a SplitKit assertion that checks for
empty intervals.
llvm-svn: 134125
This function has to deal with a lot of special cases, and the old
version got it wrong sometimes. In particular, it would sometimes leave
multiple uses in the stack interval in a single block. That causes bad
code with multiple reloads in the same basic block.
The new version handles block entry and exit in a single pass. It first
eliminates all the easy cases, and then goes on to create a local
interval for the blocks with difficult interference. Previously, we
would only create the local interval for completely isolated blocks.
It can happen that the stack interval becomes completely empty because
we could allocate a register in all edge bundles, and the new local
intervals deal with the interference. The empty stack interval is
harmless, but we need to remove a SplitKit assertion that checks for
empty intervals.
llvm-svn: 134047
Delete the Kill and Def markers in BlockInfo. They are no longer
necessary when BlockInfo describes a continuous live range.
This only affects the relatively rare kind of basic block where a live
range looks like this:
|---x o---|
Now live range splitting can pretend that it is looking at two blocks:
|---x
o---|
This allows the code to be simplified a bit.
llvm-svn: 132245
It is important that this function returns the same number of live blocks as
countLiveBlocks(CurLI) because live range splitting uses the number of live
blocks to ensure it is making progress.
This is in preparation of supporting duplicate UseBlock entries for basic blocks
that have a virtual register live-in and live-out, but not live-though.
llvm-svn: 132244
Register coalescing can sometimes create live ranges that end in the middle of a
basic block without any killing instruction. When SplitKit detects this, it will
repair the live range by shrinking it to its uses.
Live range splitting also needs to know about this. When the range shrinks so
much that it becomes allocatable, live range splitting fails because it can't
find a good split point. It is paranoid about making progress, so an allocatable
range is considered an error.
The coalescer should really not be creating these bad live ranges. They appear
when coalescing dead copies.
llvm-svn: 130787
These intervals are allocatable immediately after splitting, but they may be
evicted because of later splitting. This is rare, but when it happens they
should be split again.
The remainder intervals that cannot be allocated after splitting still move
directly to spilling.
SplitEditor::finish can optionally provide a mapping from new live intervals
back to the original interval indexes returned by openIntv().
Each original interval index can map to multiple new intervals after connected
components have been separated. Dead code elimination may also add existing
intervals to the list.
The reverse mapping allows the SplitEditor client to treat the new intervals
differently depending on the split region they came from.
llvm-svn: 129925
The transferValues() function can now handle both singly and multiply defined
values, as long as the resulting live range is known. Only rematerialized values
have their live range recomputed by extendRange().
The updateSSA() function can now insert PHI values in bulk across multiple
values in multiple target registers in one pass. The list of blocks received
from transferValues() is in layout order which seems to work well for the
iterative algorithm. Blocks from extendRange() are still in reverse BFS order,
but this function is used so rarely now that it doesn't matter.
llvm-svn: 129580
This merges the behavior of splitSingleBlocks into splitAroundRegion, so the
RS_Region and RS_Block register stages can be coalesced. That means the leftover
intervals after region splitting go directly to spilling instead of a second
pass of per-block splitting.
llvm-svn: 129379
It is common for large live ranges to have few basic blocks with register uses
and many live-through blocks without any uses. This approach grows the Hopfield
network incrementally around the use blocks, completely avoiding checking
interference for some through blocks.
llvm-svn: 129188
About 90% of the relevant blocks are live-through without uses, and the only
information required about them is their number. This saves memory and enables
later optimizations that need to look at only the use-blocks.
llvm-svn: 128985
This allows us to always keep the smaller slot for an instruction which is what
we want when a register has early clobber defines.
Drop the UsingInstrs set and the UsingBlocks map. They are no longer needed.
llvm-svn: 128886
inlined path for the common case.
Most basic blocks don't contain a call that may throw, so the last split point
os simply the first terminator.
llvm-svn: 128874
LiveRangeEdit::eliminateDeadDefs() will eventually be used by coalescing,
splitting, and spilling for dead code elimination. It can delete chains of dead
instructions as long as there are no dependency loops.
llvm-svn: 127287
The coalescer can in very rare cases leave too large live intervals around after
rematerializing cheap-as-a-move instructions.
Linear scan doesn't really care, but live range splitting gets very confused
when a live range is killed by a ghost instruction.
I will fix this properly in the coalescer after 2.9 branches.
llvm-svn: 127096