We discussed shrinking/widening of selects in IR in D26556, and I'll try to get back to that
patch eventually. But I'm hoping that this transform is less iffy in the DAG where we can check
legality of the select that we want to produce.
A few things to note:
1. We can't wait until after legalization and do this generically because (at least in the x86
tests from PR14657), we'll have PACKSS and bitcasts in the pattern.
2. This might benefit more of the SSE codegen if we lifted the legal-or-custom requirement, but
that requires a closer look to make sure we don't end up worse.
3. There's a 'vblendv' opportunity that we're missing that results in andn/and/or in some cases.
That should be fixed next.
4. I'm assuming that AVX1 offers the worst of all worlds wrt uneven ISA support with multiple
legal vector sizes, but if there are other targets like that, we should add more tests.
5. There's a codegen miracle in the multi-BB tests from PR14657 (the gcc auto-vectorization tests):
despite IR that is terrible for the target, this patch allows us to generate the optimal loop
code because something post-ISEL is hoisting the splat extends above the vector loops.
Differential Revision: https://reviews.llvm.org/D32620
llvm-svn: 301781
Summary: As per discution on how to get better codegen an large int legalization, it became clear that using a glue for the carry was preventing several desirable optimizations. Passing the carry down as a value allow for more flexibility.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D29872
llvm-svn: 301775
Summary:
Predicate<> now has a field to indicate how often it must be recomputed.
Currently, there are two frequencies, per-module (RecomputePerFunction==0)
and per-function (RecomputePerFunction==1). Per-function predicates are
currently recomputed more frequently than necessary since the only predicate
in this category is cheap to test. Per-module predicates are now computed in
getSubtargetImpl() while per-function predicates are computed in selectImpl().
Tablegen now manages the PredicateBitset internally. It should only be
necessary to add the required includes.
Also fixed a problem revealed by the test case where
constrainSelectedInstRegOperands() would attempt to tie operands that
BuildMI had already tied.
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Reviewed By: rovka
Subscribers: kristof.beyls, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D32491
llvm-svn: 301750
Fixes the issue highlighted in
http://lists.llvm.org/pipermail/cfe-dev/2014-June/037500.html.
The DW_AT_decl_file and DW_AT_decl_line attributes on namespaces can
prevent LLVM from uniquing types that are in the same namespace. They
also don't carry any meaningful information.
rdar://problem/17484998
Differential Revision: https://reviews.llvm.org/D32648
llvm-svn: 301706
Reapplied r299221 after fix for nondeterminism in ThinLTO builder (rL301599), with extra check for implicit truncation of inserted element.
llvm-svn: 301644
This is a follow up to the fix in r298360 to improve the handling of debug
values when redundant LEAs are removed. The fix in r298360 effectively
discarded the debug values. This patch now attempts to preserve the debug
values by using the DWARF DW_OP_stack_value operation via prependDIExpr.
Moved functions appendOffset and prependDIExpr from Local.cpp to
DebugInfoMetadata.cpp and made them available as static member functions of
DIExpression.
Differential Revision: https://reviews.llvm.org/D31604
llvm-svn: 301630
Summary:
In some cases LLVM (especially the SLP vectorizer) will create vectors
that are 256 bytes (or larger). Given that this is intentional[0] is
likely to get more common, this patch updates the StackMap binary
format to deal with the spill locations for said vectors.
This change also bumps the stack map version from 2 to 3.
[0]: https://reviews.llvm.org/D32533#738350
Reviewers: reames, kavon, skatkov, javed.absar
Subscribers: mcrosier, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D32629
llvm-svn: 301615
Summary:
The type of the target frame index is intptr, not the type of the value we're
going to store into it. Without this change we crash in the attached test case
when trying to type-legalize a TargetFrameIndex.
Patchpoint lowering types the target frame index as intptr as well.
Reviewers: reames, bogner, arsenm
Subscribers: arsenm, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D32256
llvm-svn: 301566
Besides better codegen, the motivation is to be able to canonicalize this pattern
in IR (currently we don't) knowing that the backend is prepared for that.
This may also allow removing code for special constant cases in
DAGCombiner::foldSelectOfConstants() that was added in D30180.
Differential Revision: https://reviews.llvm.org/D31944
llvm-svn: 301457
Build vectors have magical truncation powers, so we have things like this:
v4i1 = BUILD_VECTOR Constant:i32<1>, Constant:i32<1>, Constant:i32<1>, Constant:i32<1>
v4i16 = BUILD_VECTOR Constant:i32<1>, Constant:i32<1>, Constant:i32<1>, Constant:i32<1>
If we don't truncate the splat node returned by getConstantSplatNode(), then we won't find
truth when ZeroOrNegativeOneBooleanContent is the rule.
Differential Revision: https://reviews.llvm.org/D32505
llvm-svn: 301408
This patch reapplies r301309 with the fix to the MIR test to fix the assertion
triggered by r301309. Had trimmed a little bit too much from the MIR!
llvm-svn: 301317
This patch fixes a bug with the updating of DBG_VALUE's in
BreakAntiDependencies. Previously, it would only attempt to update the first
DBG_VALUE following the instruction whose register is being changed,
potentially leaving DBG_VALUE's referring to the wrong register. Now the code
will update all DBG_VALUE's that immediately follow the instruction.
This issue was detected as a result of an optimized codegen difference with
"-g" where an X86 byte/word fixup was not performed due to a DBG_VALUE
referencing the wrong register.
Differential Revision: https://reviews.llvm.org/D31755
llvm-svn: 301309
I'm proposing a fold for increment-of-sexted-bool in:
https://reviews.llvm.org/D31944
...so we need to know what happens in more cases like these.
llvm-svn: 301269
When functions are terminated by unreachable instructions, the last
instruction might trigger a CFI instruction to be generated. However,
emitting it would be be illegal since the function (and thus the FDE
the CFI is in) has already ended with the previous instruction.
Darwin's dwarfdump --verify --eh-frame complains about this and the
specification supports this.
Relevant bits from the DWARF 5 standard (6.4 Call Frame Information):
"[The] address_range [field in an FDE]: The number of bytes of
program instructions described by this entry."
"Row creation instructions: [...]
The new location value is always greater than the current one."
The first quotation implies that a CFI cannot describe a target
address outside of the enclosing FDE's range.
rdar://problem/26244988
Differential Revision: https://reviews.llvm.org/D32246
llvm-svn: 301219
While we use BaseIndexOffset in FindBetterNeighborChains to
appropriately realize they're almost the same address and should be
improved concurrently we do not use it in isAlias using the non-index
understanding FindBaseOffset instead. Adding a BaseIndexOffset check
in isAlias like should allow indexed stores to be merged.
FindBaseOffset to be excised in subsequent patch.
Reviewers: jyknight, aditya_nandakumar, bogner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31987
llvm-svn: 301187
Since Split DWARF needs to name the actual .dwo file that is generated,
it can't be known at the time the llvm::Module is produced as it may be
merged with other Modules before the object is generated and that object
may be generated with any name.
By passing the Split DWARF file name when LLVM is producing object code
the .dwo file name in the object file can match correctly.
The support for Split DWARF for implicit modules remains the same -
using metadata to store the dwo name and dwo id so that potentially
multiple skeleton CUs referring to different dwo files can be generated
from one llvm::Module.
llvm-svn: 301062
In addition to the original commit, tighten the condition for when to
pad empty functions to COFF Windows. This avoids running into problems
when targeting e.g. Win32 AMDGPU, which caused test failures when this
was committed initially.
llvm-svn: 301047
Empty functions can lead to duplicate entries in the Guard CF Function
Table of a binary due to multiple functions sharing the same RVA,
causing the kernel to refuse to load that binary.
We had a terrific bug due to this in Chromium.
It turns out we were already doing this for Mach-O in certain
situations. This patch expands the code for that in
AsmPrinter::EmitFunctionBody() and renames
TargetInstrInfo::getNoopForMachoTarget() to simply getNoop() since it
seems it was used for not just Mach-O anyway.
Differential Revision: https://reviews.llvm.org/D32330
llvm-svn: 301040
places based on it.
Existing constant hoisting pass will merge a group of contants in a small range
and hoist the const materialization code to the common dominator of their uses.
However, if the uses are all in cold pathes, existing implementation may hoist
the materialization code from cold pathes to a hot place. This may hurt performance.
The patch introduces BFI to the pass and selects the best insertion places based
on it.
The change is controlled by an option consthoist-with-block-frequency which is
off by default for now.
Differential Revision: https://reviews.llvm.org/D28962
llvm-svn: 300989
when the subtarget has fast strings.
This has two advantages:
- Speed is improved. For example, on Haswell thoughput improvements increase
linearly with size from 256 to 512 bytes, after which they plateau:
(e.g. 1% for 260 bytes, 25% for 400 bytes, 40% for 508 bytes).
- Code is much smaller (no need to handle boundaries).
llvm-svn: 300957
Debug information is calculated with getFrameIndexReference() which was
missing some logic for the fixed object cases (= parameters on the stack).
rdar://24557797
Differential Revision: https://reviews.llvm.org/D32204
llvm-svn: 300781
I've changed one of the tests to not fold away, but we didn't and still don't do the transform
that the comment claims we do (and I don't know why we'd want to do that).
Follow-up to:
https://reviews.llvm.org/rL300725https://reviews.llvm.org/rL300763
llvm-svn: 300772
This allows forming more 'not' ops, so we get improvements for ISAs that have and-not.
Follow-up to:
https://reviews.llvm.org/rL300725
llvm-svn: 300763
The patch itself is simple: stop discriminating against vectors in visitAnd() and again in
SimplifyDemandedBits().
Some notes for reference:
1. We're not consistent about calls to SimplifyDemandedBits in the various visitXXX functions.
Sometimes, we check if the RHS is a constant first. Other times (like here), we just dive in.
2. I'd like to break the vector shackles in steps for the sake of risk minimization, but we could
make similar simultaneous changes in other places if we think that would be better.
3. I don't know what the intent of the changed tests in this patch was supposed to be, but since
they wiggled in a positive way, I'm just going with that. :)
4. In the rotate tests, note that we can see through non-splat constants. This is a result of D24253.
5. My motivation for being here now is to make D31944 look better, so this is step 1 of N towards
improving the vector codegen in that patch without writing any actual new code.
Differential Revision: https://reviews.llvm.org/D32230
llvm-svn: 300725
Android x86_64 target uses f128 type and stores f128 values in %xmm* registers.
SoftenFloatRes_EXTRACT_VECTOR_ELT should not convert result value
from f128 to i128.
Differential Revision: http://reviews.llvm.org/D32102
llvm-svn: 300583
Remove non-consecutive stores from store merge candidate search as
they cannot be merged and will prevent us from finding subsequent
mergeable store cases.
Reviewers: jyknight, bogner, javed.absar, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32086
llvm-svn: 300561
Our 16 bit support is assembler-only + the terrible hack that is
.code16gcc. Simply using 32 bit registers does the right thing for the
latter.
Fixes PR32681.
llvm-svn: 300429
Summary:
In PR32594, inline assembly using the 'A' constraint on x86_64 causes
llvm to crash with a "Cannot select" stack trace. This is because
`X86TargetLowering::getRegForInlineAsmConstraint` hardcodes that 'A'
means the EAX and EDX registers.
However, on x86_64 it means the RAX and RDX registers, and on 16-bit x86
(ia16?) it means the old AX and DX registers.
Add new register classes in `X86RegisterInfo.td` to support these cases,
and amend the logic in `getRegForInlineAsmConstraint` to cope with
different subtargets. Also add a test case, derived from PR32594.
Reviewers: craig.topper, qcolombet, RKSimon, ab
Reviewed By: ab
Subscribers: ab, emaste, royger, llvm-commits
Differential Revision: https://reviews.llvm.org/D31902
llvm-svn: 300404
MOVNTDQA non-temporal aligned vector loads can be correctly represented using generic builtin loads, allowing us to remove the existing x86 intrinsics.
Clang companion patch: D31766.
Differential Revision: https://reviews.llvm.org/D31767
llvm-svn: 300325
Check if the scale operand is identical (doesn't have to be 1) and
do not check the chaain operand.
Differential revision: https://reviews.llvm.org/D31833
llvm-svn: 299986
The math works out where it can actually be counter-productive. The probability
calculations correctly handle the case where the alternative is 0 probability,
rely on those calculations.
Includes a test case that demonstrates the problem.
llvm-svn: 299892
Qin may be large, and Succ may be more frequent than BB. Take these both into
account when deciding if tail-duplication is profitable.
llvm-svn: 299891
Merging identical blocks when it doesn't reduce fallthrough. It is common for
the blocks created from critical edge splitting to be identical. We would like
to merge these blocks whenever doing so would not reduce fallthrough.
llvm-svn: 299890
The new codepath has been in the tree for years, and there isn't any
reason to use two codepaths here.
Differential Revision: https://reviews.llvm.org/D30596
llvm-svn: 299723
This is a generic combine enabled via target hook to reduce icmp logic as discussed in:
https://bugs.llvm.org/show_bug.cgi?id=32401
It's likely that other targets will want to enable this hook for scalar transforms,
and there are probably other patterns that can use bitwise logic to reduce comparisons.
Note that we are missing an IR canonicalization for these patterns, and we will probably
prefer the pair-of-compares form in IR (shorter, more likely to fold).
Differential Revision: https://reviews.llvm.org/D31483
llvm-svn: 299542
Before r294774, there was a problem when lowering broadcasts to use
128-bit subvectors.
When we looked through a bitcast to find the broadcast input, we'd keep
using the original type, so you'd end up with things like:
(v8f32 (broadcast
(v4f32 (extract_subvector
(v8i32 V),
...))
))
r294774 fixed it to always emit subvectors with the scalar type of the
original source.
It also introduced some asserts, to check that we use scalars with
the same size, and vectors with the same number of elements.
The scalar size equality is checked earlier when looking through bitcasts,
and is a useful assert.
However, the number of elements don't have to be identical: we're always
going to extract a 128-bit subvector, and we can have different size
inputs if we looked through a concat_vector to find a 256-bit source.
Relax the overzealous assert.
Replace it with a check of the original source vector being 256 or 512
bits. If it's 128 bits, we can't extract_subvector from it.
Fixes PR32371.
llvm-svn: 299490
This patch is a part one of two reviews, one for the clang and the other for LLVM.
The patch deletes the back-end intrinsics and adds support for them in the auto upgrade.
Differential Revision: https://reviews.llvm.org/D31393
llvm-svn: 299432
PSADBW pattern currently supports the 32 bit IR pattern and only GLT (greather than) comparison.
The patch extends the pattern to catch also 64 bit IR pattern and includes all other comparison types (not only GLT).
Differential Revision: https://reviews.llvm.org/D31577
llvm-svn: 299425
It can be costly to transfer from the gprs to the xmm registers and can prevent loads merging.
This patch splits vXi16/vXi32/vXi64 BUILD_VECTORS that use the same operand in multiple elements into a BUILD_VECTOR with only a single insertion of each of those elements and then performs an unary shuffle to duplicate the values.
There are a couple of minor regressions this patch unearths due to some missing MOVDDUP/BROADCAST folds that I will address in a future patch.
Note: Now that vector shuffle lowering and combining is pretty good we should be reusing that instead of duplicating so much in LowerBUILD_VECTOR - this is the first of several patches to address this.
Differential Revision: https://reviews.llvm.org/D31373
llvm-svn: 299387
The x86_64 ABI requires that the stack is 16 byte aligned on function calls. Thus, the 8-byte error code, which is pushed by the CPU for certain exceptions, leads to a misaligned stack. This results in bugs such as Bug 26413, where misaligned movaps instructions are generated.
This commit fixes the misalignment by adjusting the stack pointer in these cases. The adjustment is done at the beginning of the prologue generation by subtracting another 8 bytes from the stack pointer. These additional bytes are popped again in the function epilogue.
Fixes Bug 26413
Patch by Philipp Oppermann.
Differential Revision: https://reviews.llvm.org/D30049
llvm-svn: 299383
This reverts commit r299047 which is incorrect because the
simplification may result in incorrect propogation of undefs to users of
the folded shuffle.
Thanks to Andrea Di Biagio for pointing this out.
llvm-svn: 299368
The code already allowed vector types in via "isInteger" (which might want
a more specific name), so use splat-friendly constant predicates to match
those types.
llvm-svn: 299304
This can only happen when we have a mix of zero and undef elements and the two vectors have a different arrangement of zeros/undefs. The shuffle should eventually be constant folded to all zeros.
Fixes PR32484.
llvm-svn: 299291
(and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
We have 7 similar folds, but this one got away. The fact that the
x86 test with a branch didn't change is probably a separate bug. We
may also be missing this and the related folds in instcombine.
llvm-svn: 299252
Our _MM_HINT_T0/T1 constant values are 3/2 which matches gcc, but not icc or Intel documentation. Interestingly gcc had this same bug on their implementation of the gather/scatter builtins at one point too.
Fixes PR32411.
llvm-svn: 299234
Currently ComputeNumSignBits returns the minimum number of sign bits for all elements of vector data, when we may only be interested in one/some of the elements.
This patch adds a DemandedElts argument that allows us to specify the elements we actually care about. The original ComputeNumSignBits implementation calls with a DemandedElts demanding all elements to match current behaviour. Scalar types set this to 1.
I've only added support for BUILD_VECTOR and EXTRACT_VECTOR_ELT so far, all others will default to demanding all elements but can be updated in due course.
Followup to D25691.
Differential Revision: https://reviews.llvm.org/D31311
llvm-svn: 299219
In the long-term, we want to replace statistics with something
finer-grained that lets us gather per-function data.
Remarks are that replacement.
Create an ORE instance in SelectionDAGISel, and pass it to
SelectionDAG.
SelectionDAG was used so that we can emit remarks from all
SelectionDAG-related code, including TargetLowering and DAGCombiner.
This isn't used in the current patch but Adam tells me he's interested
for the fp-contract combines.
Use the ORE instance to emit FastISel failures as remarks (instead of
the mix of dbgs() dumps and statistics that we currently have).
Eventually, we want to have an API that tells us whether remarks are
enabled (http://llvm.org/PR32352) so that we don't emit expensive
remarks (in this case, dumping IR) when it's not needed. For now, use
'isEnabled' as a crude replacement.
This does mean that the replacement for '-fast-isel-verbose' is now
'-pass-remarks-missed=isel'. Additionally, clang users also need to
enable remark diagnostics, using '-Rpass-missed=isel'.
This also removes '-fast-isel-verbose2': there are no static statistics
that we want to only enable in asserts builds, so we can always use
the remarks regardless of the build type.
Differential Revision: https://reviews.llvm.org/D31405
llvm-svn: 299093
This will result in a KMOVW or KMOVD being emitted during register allocation. And in at least some cases this might allow the register coalescer to remove the copy all together.
llvm-svn: 298984
We currently perform the various fp_to_sint XMM conversion and then transfer to the MMX register (on 32-bit via the stack).
This patch improves support for MOVDQ2Q XMM to MMX transfers and adds the XMM->MMX fp_to_sint direct conversion patterns. The SSE2 specifications are the same as for XMM->XMM and XMM->MMX rounding/exceptions/etc.
Differential Revision: https://reviews.llvm.org/D30868
llvm-svn: 298943
Deal with case that initial node is deleted during dag-combine leading
to an assertional failure in promoteIntShiftOp.
Fixes PR32420.
Reviewers: spatel, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31403
llvm-svn: 298931
We've had several bugs(PR32256, PR32241) recently that resulted from usages of AH/BH/CH/DH either before or after a copy to/from a mask register.
This ultimately occurs because we create COPY_TO_REGCLASS with VK1 and GR8. Then in CopyToFromAsymmetricReg in X86InstrInfo we find a 32-bit super register for the GR8 to emit the KMOV with. But as these tests are demonstrating, its possible for the GR8 register to be a high register and we end up doing an accidental extra or insert from bits 15:8.
I think the best way forward is to stop making copies directly between mask registers and GR8/GR16. Instead I think we should restrict to only copies between mask registers and GR32/GR64 and use EXTRACT_SUBREG/INSERT_SUBREG to handle the conversion from GR32 to GR16/8 or vice versa.
Unfortunately, this complicates fastisel a bit more now to create the subreg extracts where we used to create GR8 copies. We can probably make a helper function to bring down the repitition.
This does result in KMOVD being used for copies when BWI is available because we don't know the original mask register size. This caused a lot of deltas on tests because we have to split the checks for KMOVD vs KMOVW based on BWI.
Differential Revision: https://reviews.llvm.org/D30968
llvm-svn: 298928
We want to check each test on each target, so we need another prefix
when SSE and AVX diverge (as they will if we handle 32-byte and higher).
llvm-svn: 298926
Reorder work in PromoteIntBinOp to prevent stale (deleted) nodes from
being used.
Fixes PR32340 and PR32345.
Reviewers: hfinkel, dbabokin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31148
llvm-svn: 298923
Summary:
G_LOAD/G_STORE, add alternative RegisterBank mapping.
For G_LOAD, Fast and Greedy mode choose the same RegisterBank mapping (GprRegBank ) for the G_GLOAD + G_FADD , can't get rid of cross register bank copy GprRegBank->VecRegBank.
Reviewers: zvi, rovka, qcolombet, ab
Reviewed By: zvi
Subscribers: llvm-commits, dberris, kristof.beyls, eladcohen, guyblank
Differential Revision: https://reviews.llvm.org/D30979
llvm-svn: 298907
This is a patch for an on-going bugzilla bug 21281 on the generated X86 code for a matrix transpose8x8 subroutine which requires vector interleaving. The generated code in AVX2 is currently non-optimal and requires 60 instructions as opposed to only 40 instructions generated for AVX1.
The patch includes a fix for the AVX2 case where vector unpack instructions use less operations than the vector blend operations available in AVX2.
In this case using vector unpack instructions is more efficient.
Reviewers:
zvi
delena
igorb
craig.topper
guyblank
eladcohen
m_zuckerman
aymanmus
RKSimon
llvm-svn: 298840
Fixed -verify-machineinstrs errors in fast-isel-select-sse.ll (one of many in PR27481)
The VMOVSSZrr/VMOVSSZrrk and VMOVSDZrr/VMOVSDZrrk instructions were assuming both source registers were V128X when the second is actually supposed to be FR32X/FR64X
Differential Revision: https://reviews.llvm.org/D31200
llvm-svn: 298805