Summary:
This fixes a bug that was exposed on gfx9 in various
GL45-CTS.shaders.loops.*_iterations.select_iteration_count_fragment tests,
e.g. GL45-CTS.shaders.loops.do_while_uniform_iterations.select_iteration_count_fragment
Reviewers: arsenm
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D36193
llvm-svn: 312337
build_vector is a more useful canonical form when
pattern matching packed operations, so turn shift
into high element into a build_vector.
Should show no change for now.
llvm-svn: 312282
The majority of the time spent in the pass checking
for the register reads. Rather than searching all of
the defined registers for uses in each instruction,
use a set of defined registers and check the operands
of the instruction.
This process still is algorithmically not great,
but with the additional trick of skipping the analysis
for addresses with one use, this brings one slow
testcase into a reasonable range.
llvm-svn: 312206
These aren't really packed instructions, so the default
op_sel_hi should be 0 since this indicates a conversion.
The operand types are scalar values that behave similar
to an f16 scalar that may be converted to f32.
Doesn't change the default printing for op_sel_hi, just
the parsing.
llvm-svn: 312179
The merge is only possible if the base address register is the
same for the two instructions. If there is only the one use,
there's no point in doing an expensive forward scan checking
for memory interference looking for a merge candidate.
This gives a signficant improvement in one extreme testcase.
The code to do the scan is still algorithmically terrible,
so this is still the slowest pass in that example.
llvm-svn: 312096
If denorms are not flushed we can use max instead of multiplication
by 1. For double that is simply faster, while for float and half
it is shorter, because mul uses constant bus and VOP3.
Differential Revision: https://reviews.llvm.org/D36856
llvm-svn: 312095
Under -cl-fast-relaxed-math we could use native_sqrt, but f64 was
allowed to produce HSAIL's nsqrt instruction. HSAIL is not here
and we stick with non-existing native_sqrt(double) as a result.
Add check for f64 to not return native functions and also remove
handling of f64 case for fold_sqrt.
Differential Revision: https://reviews.llvm.org/D37223
llvm-svn: 311900
Summary:
This is step towards separating the GCN and R600 tablegen'd code.
This is a little awkward for now, because the R600 functions won't have the
MCSubtargetInfo parameter, so we need to have AMDMGPUInstPrinter
delegate to R600InstPrinter, but once the tablegen'd code is split,
we will be able to drop the delegation and use R600InstPrinter directly.
Reviewers: arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D36444
llvm-svn: 311128
This reverts commit r310425, thus reapplying r310335 with a fix for link
issue of the AArch64 unittests on Linux bots when BUILD_SHARED_LIBS is ON.
Original commit message:
[GlobalISel] Remove the GISelAccessor API.
Its sole purpose was to avoid spreading around ifdefs related to
building global-isel. Since r309990, GlobalISel is not optional anymore,
thus, we can get rid of this mechanism all together.
NFC.
----
The fix for the link issue consists in adding the GlobalISel library in
the list of dependencies for the AArch64 unittests. This dependency
comes from the use of AArch64Subtarget that needs to know how
to destruct the GISel related APIs when being detroyed.
Thanks to Bill Seurer and Ahmed Bougacha for helping me reproducing and
understand the problem.
llvm-svn: 310969
The pass does simplifications of well known AMD library calls.
If given -amdgpu-prelink option it works in a pre-link mode which
allows to reference new library functions which will be linked in
later.
In addition it also used to process traditional AMD option
-fuse-native which allows to replace some of the functions with
their fast native implementations from the library.
The necessary glue to pass the prelink option and translate
-fuse-native is to be added to the driver.
Differential Revision: https://reviews.llvm.org/D36436
llvm-svn: 310731
This reverts commit r310115.
It causes a linker failure for the one of the unittests of AArch64 on one
of the linux bot:
http://lab.llvm.org:8011/builders/clang-ppc64le-linux-multistage/builds/3429
: && /home/fedora/gcc/install/gcc-7.1.0/bin/g++ -fPIC
-fvisibility-inlines-hidden -Werror=date-time -std=c++11 -Wall -W
-Wno-unused-parameter -Wwrite-strings -Wcast-qual
-Wno-missing-field-initializers -pedantic -Wno-long-long
-Wno-maybe-uninitialized -Wdelete-non-virtual-dtor -Wno-comment
-ffunction-sections -fdata-sections -O2
-L/home/fedora/gcc/install/gcc-7.1.0/lib64 -Wl,-allow-shlib-undefined
-Wl,-O3 -Wl,--gc-sections
unittests/Target/AArch64/CMakeFiles/AArch64Tests.dir/InstSizes.cpp.o -o
unittests/Target/AArch64/AArch64Tests
lib/libLLVMAArch64CodeGen.so.6.0.0svn lib/libLLVMAArch64Desc.so.6.0.0svn
lib/libLLVMAArch64Info.so.6.0.0svn lib/libLLVMCodeGen.so.6.0.0svn
lib/libLLVMCore.so.6.0.0svn lib/libLLVMMC.so.6.0.0svn
lib/libLLVMMIRParser.so.6.0.0svn lib/libLLVMSelectionDAG.so.6.0.0svn
lib/libLLVMTarget.so.6.0.0svn lib/libLLVMSupport.so.6.0.0svn -lpthread
lib/libgtest_main.so.6.0.0svn lib/libgtest.so.6.0.0svn -lpthread
-Wl,-rpath,/home/buildbots/ppc64le-clang-multistage-test/clang-ppc64le-multistage/stage1/lib
&& :
unittests/Target/AArch64/CMakeFiles/AArch64Tests.dir/InstSizes.cpp.o:(.toc+0x0):
undefined reference to `vtable for llvm::LegalizerInfo'
unittests/Target/AArch64/CMakeFiles/AArch64Tests.dir/InstSizes.cpp.o:(.toc+0x8):
undefined reference to `vtable for llvm::RegisterBankInfo'
The particularity of this bot is that it is built with
BUILD_SHARED_LIBS=ON
However, I was not able to reproduce the problem so far.
Reverting to unblock the bot.
llvm-svn: 310425
Summary:
Now that we've made all the necessary backend changes, we can add a new
intrinsic which exposes the new capabilities to IR producers. Since
llvm.amdgpu.update.dpp is a strict superset of llvm.amdgpu.mov.dpp, we
should deprecate the former. We also add tests for all the functionality
that was added in previous changes, now that we can access it via an IR
construct.
Reviewers: tstellar, arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye
Differential Revision: https://reviews.llvm.org/D34718
llvm-svn: 310399
Summary: This refactoring is required in order to split the R600 and GCN tablegen files.
Reviewers: arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, llvm-commits, t-tye
Differential Revision: https://reviews.llvm.org/D36286
llvm-svn: 310336
Summary:
All instructions with the DPP modifier may not write to certain lanes of
the output if bound_ctrl=1 is set or any bits in bank_mask or row_mask
aren't set, so the destination register may be both defined and modified.
The right way to handle this is to add a constraint that the destination
register is the same as one of the inputs. We could tie the destination
to the first source, but that would be too restrictive for some use-cases
where we want the destination to be some other value before the
instruction executes. Instead, add a fake "old" source and tie it to the
destination. Effectively, the "old" source defines what value unwritten
lanes will get. We'll expose this functionality to users with a new
intrinsic later.
Also, we want to use DPP instructions for computing derivatives, which
means we need to set WQM for them. We also need to enable the entire
wavefront when using DPP intrinsics to implement nonuniform subgroup
reductions, since otherwise we'll get incorrect results in some cases.
To accomodate this, add a new operand to all DPP instructions which will
be interpreted by the SI WQM pass. This will be exposed with a new
intrinsic later. We'll also add support for Whole Wavefront Mode later.
I also fixed llvm.amdgcn.mov.dpp to overwrite the source and fixed up
the test. However, I could also keep the old behavior (where lanes that
aren't written are undefined) if people want it.
Reviewers: tstellar, arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye
Differential Revision: https://reviews.llvm.org/D34716
llvm-svn: 310283
This hasn't done anything in a long time. This was
running after the the control flow pseudos were expanded,
so this would never find them. The control flow pseudo
expansion was moved to solve the problem this pass was
supposed to solve in the first place, except handling
it earlier also fixes it for fast regalloc which doesn't
use LiveIntervals.
Noticed by checking LCOV reports.
llvm-svn: 310274
Try to avoid mutually exclusive features. Don't use
a real default GPU, and use a fake "generic". The goal
is to make it easier to see which set of features are
incompatible between feature strings.
Most of the test changes are due to random scheduling changes
from not having a default fullspeed model.
llvm-svn: 310258
Its sole purpose was to avoid spreading around ifdefs related to
building global-isel. Since r309990, GlobalISel is not optional anymore,
thus, we can get rid of this mechanism all together.
NFC.
llvm-svn: 310115
Summary:
This intrinsic lets us set inactive lanes to an identity value when
implementing wavefront reductions. In combination with Whole Wavefront
Mode, it lets inactive lanes be skipped over as required by GLSL/Vulkan.
Lowering the intrinsic needs to happen post-RA so that RA knows that the
destination isn't completely overwritten due to the EXEC shenanigans, so
we need another pseudo-instruction to represent the un-lowered
intrinsic.
Reviewers: tstellar, arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye
Differential Revision: https://reviews.llvm.org/D34719
llvm-svn: 310088
Summary:
Whole Wavefront Wode (WWM) is similar to WQM, except that all of the
lanes are always enabled, regardless of control flow. This is required
for implementing wavefront reductions in non-uniform control flow, where
we need to use the inactive lanes to propagate intermediate results, so
they need to be enabled. We need to propagate WWM to uses (unless
they're explicitly marked as exact) so that they also propagate
intermediate results correctly. We do the analysis and exec mask munging
during the WQM pass, since there are interactions with WQM for things
that require both WQM and WWM. For simplicity, WWM is entirely
block-local -- blocks are never WWM on entry or exit of a block, and WWM
is not propagated to the block level. This means that computations
involving WWM cannot involve control flow, but we only ever plan to use
WWM for a few limited purposes (none of which involve control flow)
anyways.
Shaders can ask for WWM using the @llvm.amdgcn.wwm intrinsic. There
isn't yet a way to turn WWM off -- that will be added in a future
change.
Finally, it turns out that turning on inactive lanes causes a number of
problems with register allocation. While the best long-term solution
seems like teaching LLVM's register allocator about predication, for now
we need to add some hacks to prevent ourselves from getting into trouble
due to constraints that aren't currently expressed in LLVM. For the gory
details, see the comments at the top of SIFixWWMLiveness.cpp.
Reviewers: arsenm, nhaehnle, tpr
Subscribers: kzhuravl, wdng, mgorny, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D35524
llvm-svn: 310087