Commit Graph

7 Commits

Author SHA1 Message Date
Alina Sbirlea 7425179fee [LoopPassManager + MemorySSA] Only enable use of MemorySSA for LPMs known to preserve it.
Summary:
Add a flag to the FunctionToLoopAdaptor that allows enabling MemorySSA only for the loop pass managers that are known to preserve it.

If an LPM is known to have only loop transforms that *all* preserve MemorySSA, then use MemorySSA if `EnableMSSALoopDependency` is set.
If an LPM has loop passes that do not preserve MemorySSA, then the flag passed is `false`, regardless of the value of `EnableMSSALoopDependency`.

When using a custom loop pass pipeline via `passes=...`, use keyword `loop` vs `loop-mssa` to use MemorySSA in that LPM. If a loop that does not preserve MemorySSA is added while using the `loop-mssa` keyword, that's an error.

Add the new `loop-mssa` keyword to a few tests where a difference occurs when enabling MemorySSA.

Reviewers: chandlerc

Subscribers: mehdi_amini, Prazek, george.burgess.iv, sanjoy.google, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66376

llvm-svn: 369548
2019-08-21 17:00:57 +00:00
Serguei Katkov 40a3b96196 [NewPM] Add Option handling for SimpleLoopUnswitch
This patch enables passing options to SimpleLoopUnswitch via the passes pipeline.

Reviewers: chandlerc, fedor.sergeev, leonardchan, philip.pfaffe
Reviewed By: fedor.sergeev
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D60676

llvm-svn: 358880
2019-04-22 10:35:07 +00:00
Eric Christopher cee313d288 Revert "Temporarily Revert "Add basic loop fusion pass.""
The reversion apparently deleted the test/Transforms directory.

Will be re-reverting again.

llvm-svn: 358552
2019-04-17 04:52:47 +00:00
Eric Christopher a863435128 Temporarily Revert "Add basic loop fusion pass."
As it's causing some bot failures (and per request from kbarton).

This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.

llvm-svn: 358546
2019-04-17 02:12:23 +00:00
Alina Sbirlea a2eebb828e Update MemorySSA in SimpleLoopUnswitch.
Summary:
Teach SimpleLoopUnswitch to preserve MemorySSA.

Subscribers: sanjoy, jlebar, Prazek, george.burgess.iv, llvm-commits

Differential Revision: https://reviews.llvm.org/D47022

llvm-svn: 348263
2018-12-04 14:23:37 +00:00
Chandler Carruth 47dc3a346e [PM/Unswitch] Fix a collection of closely related issues with trivial
switch unswitching.

The core problem was that the way we handled unswitching trivial exit
edges through the default successor of a switch. For some reason
I thought the right way to do this was to add a block containing
unreachable and point the default successor at this block. In
retrospect, this has an amazing number of problems.

The first issue is the one that this pass has always worked around -- we
have to *detect* such edges and avoid unswitching them again. This
seemed pretty easy really. You juts look for an edge to a block
containing unreachable. However, this pattern is woefully unsound. So
many things can break it. The amazing thing is that I found a test case
where *simple-loop-unswitch itself* breaks this! When we do
a *non-trivial* unswitch of a switch we will end up splitting this exit
edge. The result will be a default successor that is an exit and
terminates in ... a perfectly normal branch. So the first test case that
I started trying to fix is added to the nontrivial test cases. This is
a ridiculous example that did just amazing things previously. With just
unswitch, it would create 10+ copies of this stuff stamped out. But if
you combine it *just right* with a bunch of other passes (like
simplify-cfg, loop rotate, and some LICM) you can get it to do this
infinitely. Or at least, I never got it to finish. =[

This, in turn, uncovered another related issue. When we are manipulating
these switches after doing a trivial unswitch we never correctly updated
PHI nodes to reflect our edits. As soon as I started changing how these
edges were managed, it became obvious there were more issues that
I couldn't realistically leave unaddressed, so I wrote more test cases
around PHI updates here and ensured all of that works now.

And this, in turn, required some adjustment to how we collect and manage
the exit successor when it is the default successor. That showed a clear
bug where we failed to include it in our search for the outer-most loop
reached by an unswitched exit edge. This was actually already tested and
the test case didn't work. I (wrongly) thought that was due to SCEV
failing to analyze the switch. In fact, it was just a simple bug in the
code that skipped the default successor. While changing this, I handled
it correctly and have updated the test to reflect that we now get
precise SCEV analysis of trip counts for the outer loop in one of these
cases.

llvm-svn: 336646
2018-07-10 08:36:05 +00:00
Chandler Carruth 3897ded691 [PM/LoopUnswitch] Fix PR37651 by correctly invalidating SCEV when
unswitching loops.

Original patch trying to address this was sent in D47624, but that
didn't quite handle things correctly. There are two key principles used
to select whether and how to invalidate SCEV-cached information about
loops:

1) We must invalidate any info SCEV has cached before unswitching as we
   may change (or destroy) the loop structure by the act of unswitching,
   and make it hard to recover everything we want to invalidate within
   SCEV.

2) We need to invalidate all of the loops whose CFGs are mutated by the
   unswitching. Notably, this isn't the *entire* loop nest, this is
   every loop contained by the outermost loop reached by an exit block
   relevant to the unswitch.

And we need to do this even when doing trivial unswitching.

I've added more focused tests that directly check that SCEV starts off
with imprecise information and after unswitching (and simplifying
instructions) re-querying SCEV will produce precise information. These
tests also specifically work to check that an *outer* loop's information
becomes precise.

However, the testing here is still a bit imperfect. Crafting test cases
that reliably fail to be analyzed by SCEV before unswitching and succeed
afterward proved ... very, very hard. It took me several hours and
careful work to build these, and I'm not optimistic about necessarily
coming up with more to cover more elaborate possibilities. Fortunately,
the code pattern we are testing here in the pass is really
straightforward and reliable.

Thanks to Max Kazantsev for the initial work on this as well as the
review, and to Hal Finkel for helping me talk through approaches to test
this stuff even if it didn't come to much.

Differential Revision: https://reviews.llvm.org/D47624

llvm-svn: 336183
2018-07-03 09:13:27 +00:00