As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
This gets rid of the brittle/mysterious calls to @sink()/@sideeffect()
peppered throughout the test cases. They are no longer needed to force
splitting to occur.
llvm-svn: 351480
Algorithm: Identify maximal cold regions and put them in a worklist. If
a candidate region overlaps with another, discard it. While the worklist
is full, remove a single-entry sub-region from the worklist and attempt
to outline it. By the non-overlap property, this should not invalidate
parts of the domtree pertaining to other outlining regions.
Testing: LNT results on X86 are clean. With test-suite + externals, llvm
outlines 134KB pre-patch, and 352KB post-patch (+ ~2.6x). The file
483.xalancbmk/src/Constants.cpp stands out as an extreme case where llvm
outlines over 100 times in some functions (mostly EH paths). There was
not a significant performance impact pre vs. post-patch.
Differential Revision: https://reviews.llvm.org/D53887
llvm-svn: 348639
The current splitting algorithm works in three stages:
1) Identify cold blocks, then
2) Use forward/backward propagation to mark hot blocks, then
3) Grow a SESE region of blocks *outside* of the set of hot blocks and
start outlining.
While testing this pass on Apple internal frameworks I noticed that some
kinds of control flow (e.g. loops) are never outlined, even though they
unconditionally lead to / follow cold blocks. I noticed two other issues
related to how cold regions are identified:
- An inconsistency can arise in the internal state of the hotness
propagation stage, as a block may end up in both the ColdBlocks set
and the HotBlocks set. Further inconsistencies can arise as these sets
do not match what's in ProfileSummaryInfo.
- It isn't necessary to limit outlining to single-exit regions.
This patch teaches the splitting algorithm to identify maximal cold
regions and outline them. A maximal cold region is defined as the set of
blocks post-dominated by a cold sink block, or dominated by that sink
block. This approach can successfully outline loops in the cold path. As
a side benefit, it maintains less internal state than the current
approach.
Due to a limitation in CodeExtractor, blocks within the maximal cold
region which aren't dominated by a single entry point (a so-called "max
ancestor") are filtered out.
Results:
- X86 (LNT + -Os + externals): 134KB of TEXT were outlined compared to
47KB pre-patch, or a ~3x improvement. Did not see a performance impact
across two runs.
- AArch64 (LNT + -Os + externals + Apple-internal benchmarks): 149KB
of TEXT were outlined. Ditto re: performance impact.
- Outlining results improve marginally in the internal frameworks I
tested.
Follow-ups:
- Outline more than once per function, outline large single basic
blocks, & try to remove unconditional branches in outlined functions.
Differential Revision: https://reviews.llvm.org/D53627
llvm-svn: 345209