Add conversion pass for Vector dialect to SPIR-V dialect and add some simple
conversion pattern for vector.broadcast, vector.insert, vector.extract.
Differential Revision: https://reviews.llvm.org/D88761
This change replaces container used for storing temporary
strings for generated code to std::list.
SmallVector may reallocate internal data, which will invalidate
references when more than one extended instruction set is
generated.
Reviewed By: mravishankar, antiagainst
Differential Revision: https://reviews.llvm.org/D88626
Previously we wrote multi-byte values out as-is from host memory. Use
the `emitIntN` helpers in `MCStreamer` to produce a valid descriptor
irrespective of the host endianness.
Reviewed By: arsenm, rochauha
Differential Revision: https://reviews.llvm.org/D88858
Combine ExtractOp with scalar result with BroadcastOp source. This is useful to
be able to incrementally convert degenerated vector of one element into scalar.
Differential Revision: https://reviews.llvm.org/D88751
Introduce a utility function to make it more
convenient to write code that is the same on
the GFX9 and GFX10 subtargets.
Use isGFX9Plus in the AsmParser for AMDGPU.
Authored By: Joe_Nash
Differential Revision: https://reviews.llvm.org/D88908
Set the default alignment control variables for z/OS target and add test case for alignment rules on z/OS.
Reviewed By: abhina.sreeskantharajan
Differential Revision: https://reviews.llvm.org/D88845
As part of PR45974, we're getting closer to not creating 'padded' vectors on-the-fly in combineX86ShufflesRecursively, and only pad the source inputs if we have a definite match inside combineX86ShuffleChain.
At the moment combineX86ShuffleChain just has to bitcast an input to the correct shuffle type, but eventually we'll need to pad them as well. So, move the bitcast into a 'CanonicalizeShuffleInput helper for now, making the diff for future padding support a lot smaller.
The call slot optimization has some home-grown code for checking
whether the destination is dereferenceable. Replace this with the
generic isDereferenceableAndAlignedPointer() helper.
I'm not checking alignment here, because that is currently handled
separately and may be an enforced alignment for allocas. The clean
way of integrating that part would probably be to accept a callback
in isDereferenceableAndAlignedPointer() for the actual isAligned check,
which would then have a chance to use an enforced alignment instead.
This allows the destination to be a GEP (among other things), though
the two open TODOs may prevent it from working in practice.
Differential Revision: https://reviews.llvm.org/D88805
When performing call slot optimization for a non-local destination,
we need to check whether there may be throwing calls between the
call and the copy. Otherwise, the early write to the destination
may be observable by the caller.
This was already done for call slot optimization of load/store,
but not for memcpys. For the sake of clarity, I'm moving this check
into the common optimization function, even if that does need an
additional instruction scan for the load/store case.
As efriedma pointed out, this check is not sufficient due to
potential accesses from another thread. This case is left as a TODO.
Differential Revision: https://reviews.llvm.org/D88799
The clock_gettime function is available when _POSIX_TIMERS is defined.
We check for this and set _LIBCPP_USE_CLOCK_GETTIME accordingly since
59b3102739. But check for _LIBCPP_USE_CLOCK_GETTIME was removed in
babd3aefc9. As a result, code is now trying to use clock_gettime even
on platforms where it is not available and it is causing build failure
with newlib.
This patch restores the checks to fix this.
Differential Revision: https://reviews.llvm.org/D88825
CHARACTER length expressions were not always being
captured or computed as part of procedure "characteristics",
leading to test failures due to an inability to compute
memory size expressions accurately.
Differential revision: https://reviews.llvm.org/D88689
PR47632
This allows MC to match `data32 ...` as one instruction instead of two (data32 without insn + insn).
The compatibility with GNU as improves: `data32 ljmp` will be matched as ljmpl.
`data32 lgdt 4(%eax)` will be matched as `lgdtl` (prefixes: 0x67 0x66, instead
of 0x66 0x67).
GNU as supports many other `data32 *w` as `*l`. We currently just hard code
`data32 callw` and `data32 ljmpw`. Generalizing the suffix replacement is
tricky and requires a think about the "bwlq" appending suffix rules in MatchAndEmitATTInstruction.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D88772
Committed [HIP] Restructure hip headers to add cmath
with typo in commit message. Should be Differential
Revision instead of Review. Using this to close the
diff.
Differential Revision: https://reviews.llvm.org/D88837
Separate __clang_hip_math.h header into __clang_hip_cmath.h
and __clang_hip_math.h. Improve the math function definition,
and add missing definitions or declarations. Add missing
overloads.
Reviewed By: tra, JonChesterfield
Differential Review: https://reviews.llvm.org/D88837
This involves porting BPFAbstractMemberAccess and BPFPreserveDIType to
NPM, then adding them BPFTargetMachine::registerPassBuilderCallbacks
(the NPM equivalent of adjustPassManager()).
Reviewed By: yonghong-song, asbirlea
Differential Revision: https://reviews.llvm.org/D88855
Some of these depended on analyses being present that aren't provided
automatically in NPM.
early_dce_clobbers_callgraph.ll was previously inlining a noinline function?
cast-call-combine.ll relied on the legacy always-inline pass being a
CGSCC pass and getting rerun.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D88187
This one is weird...
globals-aa needs to be already computed at licm, or else a function pass
can't run a module analysis and won't have access to globals-aa.
But the globals-aa result is impacted by instcombine in a way that
affects what the test is expecting. If globals-aa is computed before
instcombine, it is cached and globals-aa used in licm won't contain the
necessary info provided by instcombine.
Another catch is that if we don't invalidate AAManager, it will use the
cached AAManager that instcombine requested, which may not contain
globals-aa. So we have to invalidate<aa> so that licm can recompute
an AAManager with the globals-aa created by the require<globals-aa>.
This is essentially the problem described in https://reviews.llvm.org/D84259.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D88118
When we assume a return value is dead we might still visit return
instructions via `Attributor::checkForAllReturnedValuesAndReturnInsts(..)`.
When we do so the "returned value" is potentially simplified to `undef`
as it is the assumed "returned value". This is a problem if there was a
preexisting `noundef` attribute that will only be removed as we manifest
the `undef` return value. We should not use this combination to derive
`unreachable` though. Two test cases fixed.
In AAMemoryBehaviorFloating we used to track benign uses in a SetVector.
With this change we look through benign uses eagerly to reduce the
number of elements (=Uses) we look at during an update.
The test does actually not fail prior to this commit but I already wrote
it so I kept it.
A lot of our code building with clang-cl.exe using Clang 11 was failing with
the following 2 type of errors:
1. explicit specialization of 'foo' after instantiation
2. no matching function for call to 'bar'
Note that we also use -fdelayed-template-parsing in our builds.
I tried pretty hard to get a small repro for these failures, but couldn't. So
there is some subtle edge case in the -fpch-instantiate-templates feature
introduced by this change: https://reviews.llvm.org/D69585
When I tried turning this off using -fno-pch-instantiate-templates, builds
would silently fail with the same error without any indication that
-fno-pch-instantiate-templates was being ignored by the compiler. Then I
realized this "no" option wasn't actually working when I ran Clang under a
debugger.
Differential revision: https://reviews.llvm.org/D88680
We know V is a IntToPtrInst or PtrToIntInst type so we know its a CastInst - so use cast<> directly.
Prevents clang static analyzer warning that we could deference a null pointer.
This still only gets used for scalar types but now always uses ConstantExpr in preparation for vector support - it was using APInt methods in some places.
This folds a select_cc or select(set_cc) of a max or min vector reduction with a scalar value into a VMAXV or VMINV.
Differential Revision: https://reviews.llvm.org/D87836
This revision adds init_tensors support to buffer allocation for Linalg on tensors.
Currently makes the assumption that the init_tensors fold onto the first output tensors.
This assumption is not currently enforced or cast in stone and requires experimenting with tiling linalg on tensors for ops **without reductions**.
Still this allows progress towards the end-to-end goal.
This patch makes the parser
- reject higher vector registers (>=16) in operands where they should not
be accepted.
- accept higher integers (>=16) in vector register operands.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D88888
Move common ::DebugProcess() implementation shared by Linux and NetBSD
(and to be shared by FreeBSD shortly) into PlatformPOSIX, and move
the old base implementation used only by Darwin to PlatformDarwin.
Differential Revision: https://reviews.llvm.org/D88852
This diff adds support for universal binaries to llvm-objcopy.
This is a recommit of 32c8435ef7 with the asan issue fixed.
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D88400
Current Statepoint MI format is this:
STATEPOINT
<id>, <num patch bytes >, <num call arguments>, <call target>,
[call arguments...],
<StackMaps::ConstantOp>, <calling convention>,
<StackMaps::ConstantOp>, <statepoint flags>,
<StackMaps::ConstantOp>, <num deopt args>, [deopt args...],
<gc base/derived pairs...> <gc allocas...>
Note that GC pointers are listed in pairs <base,derived>.
This causes base pointers to appear many times (at least twice) in
instruction, which is bad for us when VReg lowering is ON.
The problem is that machine operand tiedness is 1-1 relation, so
it might look like this:
%vr2 = STATEPOINT ... %vr1, %vr1(tied-def0)
Since only one instance of %vr1 is tied, that may lead to incorrect
codegen (see PR46917 for more details), so we have to always spill
base pointers. This mostly defeats new VReg lowering scheme.
This patch changes statepoint instruction format so that every
gc pointer appears only once in operand list. That way they all can
be tied. Additional set of operands is added to preserve base-derived
relation required to build stackmap.
New statepoint has following format:
STATEPOINT
<id>, <num patch bytes>, <num call arguments>, <call target>,
[call arguments...],
<StackMaps::ConstantOp>, <calling convention>,
<StackMaps::ConstantOp>, <statepoint flags>,
<StackMaps::ConstantOp>, <num deopt args>, [deopt args...],
<StackMaps::ConstantOp>, <num gc pointers>, [gc pointers...],
<StackMaps::ConstantOp>, <num gc allocas>, [gc allocas...]
<StackMaps::ConstantOp>, <num entries in gc map>, [base/derived indices...]
Changes are:
- every gc pointer is listed only once in a flat length-prefixed list;
- alloca list is prefixed with its length too;
- following alloca list is length-prefixed list of base-derived
indices of pointers from gc pointer list. Note that indices are
logical (number of pointer), not absolute (index of machine operand).
Differential Revision: https://reviews.llvm.org/D87154