Before this instruction supported output values, it fit fairly
naturally as a terminator. However, being a terminator while also
supporting outputs causes some trouble, as the physreg->vreg COPY
operations cannot be in the same block.
Modeling it as a non-terminator allows it to be handled the same way
as invoke is handled already.
Most of the changes here were created by auditing all the existing
users of MachineBasicBlock::isEHPad() and
MachineBasicBlock::hasEHPadSuccessor(), and adding calls to
isInlineAsmBrIndirectTarget or mayHaveInlineAsmBr, as appropriate.
Reviewed By: nickdesaulniers, void
Differential Revision: https://reviews.llvm.org/D79794
Condition `secondReg` is checked both in an outer and in an inner `if`
statement in static function `canCompareBeNewValueJump()` in file
`HexagonNewValueJump.cpp`. This patch removes the redundant inner check.
The issue was found using `clang-tidy` check under review
`misc-redundant-condition`. See https://reviews.llvm.org/D81272.
Differential Revision: https://reviews.llvm.org/D82556
Summary:
Get back `const` partially lost in one of recent changes.
Additionally specify explicit qualifiers in few places.
Reviewers: samparker
Reviewed By: samparker
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82383
Add the remaining arithmetic opcodes into the generic implementation
of getUserCost and then call this from getInstructionThroughput. Most
of the backends have been modified to return the base implementation
for cost kinds other RecipThroughput. The outlier here is AMDGPU
which already uses getArithmeticInstrCost for all the cost kinds.
This change means that most of the opcodes can be removed from that
backends implementation of getUserCost.
Differential Revision: https://reviews.llvm.org/D80992
Summary:
Note to downstream target maintainers: this might silently change the semantics of your code if you override `TargetLowering::allowsMemoryAccess` without marking it override.
This patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81379
Add cases for icmp, fcmp and select into the switch statement of the
generic getUserCost implementation with getInstructionThroughput then
calling into it. The BasicTTI and backend implementations have be set
to return a default value (1) when a cost other than throughput is
being queried.
Differential Revision: https://reviews.llvm.org/D80550
Previously, it tried to infer the correct destination block from the
successor list, but this is a rather tricky propspect, given the
existence of successors that occur mid-block, such as invoke, and
potentially in the future, callbr/INLINEASM_BR. (INLINEASM_BR, in
particular would be problematic, because its successor blocks are not
distinct from "normal" successors, as EHPads are.)
Instead, require the caller to pass in the expected fallthrough
successor explicitly. In most callers, the correct block is
immediately clear. But, in MachineBlockPlacement, we do need to record
the original ordering, before starting to reorder blocks.
Unfortunately, the goal of decoupling the behavior of end-of-block
jumps from the successor list has not been fully accomplished in this
patch, as there is currently no other way to determine whether a block
is intended to fall-through, or end as unreachable. Further work is
needed there.
Differential Revision: https://reviews.llvm.org/D79605
Use getMemoryOpCost from the generic implementation of getUserCost
and have getInstructionThroughput return the result of that for loads
and stores.
This also means that the X86 implementation of getUserCost can be
removed with the functionality folded into its getMemoryOpCost.
Differential Revision: https://reviews.llvm.org/D80984
Summary:
While clustering mem ops, AMDGPU target needs to consider number of clustered bytes
to decide on max number of mem ops that can be clustered. This patch adds support to pass
number of clustered bytes to target mem ops clustering logic.
Reviewers: foad, rampitec, arsenm, vpykhtin, javedabsar
Reviewed By: foad
Subscribers: MatzeB, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, javed.absar, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80545
Add the remaining cast instruction opcodes to the base implementation
of getUserCost and directly return the result. This allows
getInstructionThroughput to return getUserCost for the casts. This
has required changes to PPC and SystemZ because they implement
getUserCost and/or getCastInstrCost with adjustments for vector
operations. Adjusts have also been made in the remaining backends
that implement the method so that they still produce a cost of zero
or one for cost kinds other than throughput.
Differential Revision: https://reviews.llvm.org/D79848
Combine the two API calls into one by introducing a structure to hold
the relevant data. This has the added benefit of moving the boiler
plate code for arguments and flags, into the constructors. This is
intended to be a non-functional change, but the complicated web of
logic involved here makes it very hard to guarantee.
Differential Revision: https://reviews.llvm.org/D79941
SCEVExpander modifies the underlying function so it is more suitable in
Transforms/Utils, rather than Analysis. This allows using other
transform utils in SCEVExpander.
This patch was originally committed as b8a3c34eee, but broke the
modules build, as LoopAccessAnalysis was using the Expander.
The code-gen part of LAA was moved to lib/Transforms recently, so this
patch can be landed again.
Reviewers: sanjoy.google, efriedma, reames
Reviewed By: sanjoy.google
Differential Revision: https://reviews.llvm.org/D71537
Replace with forward declarations and move includes down to source files where required.
I also needed to move the TargetLoweringObjectFile::SectionForGlobal wrapper implementation down into TargetLoweringObjectFile.cpp
verifyFunction/verifyModule don't assert or error internally. They
also don't print anything if you don't pass a raw_ostream to them.
So the caller needs to check the result and ideally pass a stream
to get the messages. Otherwise they're just really expensive no-ops.
I've filed PR45965 for another instance in SLPVectorizer
that causes a lit test failure.
Differential Revision: https://reviews.llvm.org/D80106
Summary:
The BFloat IR type is introduced to provide support for, initially, the BFloat16
datatype introduced with the Armv8.6 architecture (optional from Armv8.2
onwards). It has an 8-bit exponent and a 7-bit mantissa and behaves like an IEEE
754 floating point IR type.
This is part of a patch series upstreaming Armv8.6 features. Subsequent patches
will upstream intrinsics support and C-lang support for BFloat.
Reviewers: SjoerdMeijer, rjmccall, rsmith, liutianle, RKSimon, craig.topper, jfb, LukeGeeson, sdesmalen, deadalnix, ctetreau
Subscribers: hiraditya, llvm-commits, danielkiss, arphaman, kristof.beyls, dexonsmith
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78190
SUnit represent a MachineInstr in post-regalloc scheduling but SDNode
in pre-regalloc scheduling. when pass -enable-hexagon-sdnode-sched to
Hexagon backend with -O1 and above, this may cause an assertion failed.
Fixes PR45194.
Differential Revision: https://reviews.llvm.org/D76134
This patch stores the alignment for ConstantPoolSDNode as an
Align and updates the getConstantPool interface to take a MaybeAlign.
Removing getAlignment() will be done as a follow up.
Differential Revision: https://reviews.llvm.org/D79436
getScalarizationOverhead is only ever called with vectors (and we already had a load of cast<VectorType> calls immediately inside the functions).
Followup to D78357
Reviewed By: @samparker
Differential Revision: https://reviews.llvm.org/D79341
Make the kind of cost explicit throughout the cost model which,
apart from making the cost clear, will allow the generic parts to
calculate better costs. It will also allow some backends to
approximate and correlate the different costs if they wish. Another
benefit is that it will also help simplify the cost model around
immediate and intrinsic costs, where we currently have multiple APIs.
RFC thread:
http://lists.llvm.org/pipermail/llvm-dev/2020-April/141263.html
Differential Revision: https://reviews.llvm.org/D79002
While restoring latency, check if any of the registers of
source instruction is a subregister of the successor instructions
apart from being same register.
The improvements to the x86 vector insert/extract element costs in D74976 resulted in the estimated costs for vector initialization and scalarization increasing higher than should be expected. This is particularly noticeable on pre-SSE4 targets where the available of legal INSERT_VECTOR_ELT ops is more limited.
This patch does 2 things:
1 - it implements X86TTIImpl::getScalarizationOverhead to more accurately represent the typical costs of a ISD::BUILD_VECTOR pattern.
2 - it adds a DemandedElts mask to getScalarizationOverhead to permit the SLP's BoUpSLP::getGatherCost to be rewritten to use it directly instead of accumulating raw vector insertion costs.
This fixes PR45418 where a v4i8 (zext'd to v4i32) was no longer vectorizing.
A future patch should extend X86TTIImpl::getScalarizationOverhead to tweak the EXTRACT_VECTOR_ELT scalarization costs as well.
Reviewed By: @craig.topper
Differential Revision: https://reviews.llvm.org/D78216
There are several different types of cost that TTI tries to provide
explicit information for: throughput, latency, code size along with
a vague 'intersection of code-size cost and execution cost'.
The vectorizer is a keen user of RecipThroughput and there's at least
'getInstructionThroughput' and 'getArithmeticInstrCost' designed to
help with this cost. The latency cost has a single use and a single
implementation. The intersection cost appears to cover most of the
rest of the API.
getUserCost is explicitly called from within TTI when the user has
been explicit in wanting the code size (also only one use) as well
as a few passes which are concerned with a mixture of size and/or
a relative cost. In many cases these costs are closely related, such
as when multiple instructions are required, but one evident diverging
cost in this function is for div/rem.
This patch adds an argument so that the cost required is explicit,
so that we can make the important distinction when necessary.
Differential Revision: https://reviews.llvm.org/D78635