Summary:
This revision adds a new hook, `notifyMatchFailure`, that allows for notifying the rewriter that a match failure is coming with the provided reason. This hook takes as a parameter a callback that fills a `Diagnostic` instance with the reason why the match failed. This allows for the rewriter to decide how this information can be displayed to the end-user, and may completely ignore it if desired(opt mode). For now, DialectConversion is updated to include this information in the debug output.
Differential Revision: https://reviews.llvm.org/D76203
MLIR supports terminators that have the same successor block with different
block operands, which cannot be expressed in the LLVM's phi-notation as the
block identifier is used to tell apart the predecessors. This limitation can be
worked around by branching to a new block instead, with this new block
unconditionally branching to the original successor and forwarding the
argument. Until now, this transformation was performed during the conversion
from the Standard to the LLVM dialect. This does not scale well to multiple
dialects targeting the LLVM dialect as all of them would have to be aware of
this limitation and perform the preparatory transformation. Instead, do it as a
separate pass and run it immediately before the translation.
Differential Revision: https://reviews.llvm.org/D75619
A memref argument is converted into a pointer-to-struct argument
of type `{T*, T*, i64, i64[N], i64[N]}*` in the wrapper function,
where T is the converted element type and N is the memref rank.
Differential Revision: https://reviews.llvm.org/D76059
Summary: This adds bitfields that map to the dialect attribute verifier hooks. This also moves over the Test dialect to have its declaration generated.
Differential Revision: https://reviews.llvm.org/D76254
- rename vars that had inst suffixes (due to ops earlier being
known as insts); other renames for better readability
- drop unnecessary matches in test cases
- iterate without block terminator
- comment/doc updates
- instBodySkew -> affineForOpBodySkew
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D76214
Summary:
This regional op in the QuantOps dialect will be used to wrap
high-precision ops into atomic units for quantization. All the values
used by the internal ops are captured explicitly by the op inputs. The
quantization parameters of the inputs and outputs are stored in the
attributes.
Subscribers: jfb, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75972
Summary:
To enable this, two changes are needed:
1) Add an optional attribute `padding` to linalg.conv.
2) Compute if the indices accessing is out of bound in the loops. If so, use the
padding value `0`. Otherwise, use the value derived from load.
In the patch, the padding only works for lowering without other transformations,
e.g., tiling, fusion, etc.
Differential Revision: https://reviews.llvm.org/D75722
Summary:
This revision adds lowering of vector.contract to llvm.intr.matrix_multiply.
Note that there is currently a mismatch between the MLIR vector dialect which
expects row-major layout and the LLVM matrix intrinsics which expect column
major layout.
As a consequence, we currently only match a vector.contract with indexing maps
that express column-major matrix multiplication.
Other cases would require additional transposes and it is better to wait for
LLVM intrinsics to provide a per-operation attribute that would specify which
layout is expected.
A separate integration test, not submitted to MLIR core, has independently
verified that correct execution occurs on a 2x2x2 matrix multiplication.
Differential Revision: https://reviews.llvm.org/D76014
Summary:
The direct lowering of vector.broadcast into LLVM has been replaced by
progressive lowering into elementary vector ops. This also required a
small refactoring of a llvm.mlir test that used a direct vector.broadcast
operator (just to define a matmul).
Reviewers: nicolasvasilache, andydavis1, rriddle
Reviewed By: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76143
Previously we only consider the version/capability/extension requirements
on ops themselves. Some types in SPIR-V also require special extensions
or capabilities to be used. For example, non-32-bit integers/floats
will require different capabilities and/or extensions depending on
where they are used because it may mean special hardware abilities.
This commit adds query methods to SPIR-V type class hierarchy to support
querying extensions and capabilities. We don't go through ODS for
auto-generating such information given that we don't have them in
SPIR-V machine readable grammar and there are just a few types.
Differential Revision: https://reviews.llvm.org/D75875
This commits changes the definition of spv.module to use the #spv.vce
attribute for specifying (version, capabilities, extensions) triple
so that we can have better API and custom assembly form. Since now
we have proper modelling of the triple, (de)serialization is wired up
to use them.
With the new UpdateVCEPass, we don't need to manually specify the
required extensions and capabilities anymore when creating a spv.module.
One just need to call UpdateVCEPass before serialization to get the
needed version/extensions/capabilities.
Differential Revision: https://reviews.llvm.org/D75872
Creates an operation pass that deduces and attaches the minimal version/
capabilities/extensions requirements for spv.module ops.
For each spv.module op, this pass requires a `spv.target_env` attribute on
it or an enclosing module-like op to drive the deduction. The reason is
that an op can be enabled by multiple extensions/capabilities. So we need
to know which one to pick. `spv.target_env` gives the hard limit as for
what the target environment can support; this pass deduces what are
actually needed for a specific spv.module op.
Differential Revision: https://reviews.llvm.org/D75870
We also need the (version, capabilities, extensions) triple on the
spv.module op. Thus far we have been using separate 'extensions'
and 'capabilities' attributes there and 'version' is missing. Creating
a separate attribute for the trip allows us to reuse the assembly
form and verification.
Differential Revision: https://reviews.llvm.org/D75868
HasNoSideEffect can now be implemented using the MemoryEffectInterface, removing the need to check multiple things for the same information. This also removes an easy foot-gun for users as 'Operation::hasNoSideEffect' would ignore operations that dynamically, or recursively, have no side effects. This also leads to an immediate improvement in some of the existing users, such as DCE, now that they have access to more information.
Differential Revision: https://reviews.llvm.org/D76036
The current mechanism for identifying is a bit hacky and extremely adhoc, i.e. we explicit check 1-result, 0-operand, no side-effect, and always foldable and then assume that this is a constant. Adding a trait adds structure to this, and makes checking for a constant much more efficient as we can guarantee that all of these things have already been verified.
Differential Revision: https://reviews.llvm.org/D76020
Summary:
This replaces the direct lowering of vector.outerproduct to LLVM with progressive lowering into elementary vectors ops to avoid having the similar lowering logic at several places.
NOTE1: with the new progressive rule, the lowered llvm is slightly more elaborate than with the direct lowering, but the generated assembly is just as optimized; still if we want to stay closer to the original, we should add a "broadcast on extract" to shuffle rewrite (rather than special cases all the lowering steps)
NOTE2: the original outerproduct lowering code should now be removed but some linalg test work directly on vector and contain some dead code, so this requires another CL
Reviewers: nicolasvasilache, andydavis1
Reviewed By: nicolasvasilache, andydavis1
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75956
Summary:
affineDataCopyGenerate is a monolithinc function that
combines several steps for good reasons, but it makes customizing
the behaivor even harder. The major two steps by affineDataCopyGenerate are:
a) Identify interesting memrefs and collect their uses.
b) Create new buffers to forward these uses.
Step (a) actually has requires tremendous customization options. One could see
that from the recently added filterMemRef parameter.
This patch adds a function that only does (b), in the hope that (a)
can be directly implemented by the callers. In fact, (a) is quite
simple if the caller has only one buffer to consider, or even one use.
Differential Revision: https://reviews.llvm.org/D75965
Summary: In some situations the name of the attribute is not representable as a bare-identifier, this revision adds support for those cases by formatting the name as a string instead. This has the added benefit of removing the identifier regex from the verifier.
Differential Revision: https://reviews.llvm.org/D75973
Summary:
This patch add some builtin operation for the gpu.all_reduce ops.
- for Integer only: `and`, `or`, `xor`
- for Float and Integer: `min`, `max`
This is useful for higher level dialect like OpenACC or OpenMP that can lower to the GPU dialect.
Differential Revision: https://reviews.llvm.org/D75766
Summary:
1-bit integer is tricky in different dialects sometimes. E.g., there is no
arithmetic instructions on 1-bit integer in SPIR-V, i.e., `spv.IMul %0, %1 : i1`
is not valid. Instead, `spv.LogicalAnd %0, %1 : i1` is valid. Creating the op
directly makes lowering easier because we don't need to match a complicated
pattern like `!(!lhs && !rhs)`. Also, this matches the semantic better.
Also add assertions on inputs.
Differential Revision: https://reviews.llvm.org/D75764
Summary:
This patch add some builtin operation for the gpu.all_reduce ops.
- for Integer only: `and`, `or`, `xor`
- for Float and Integer: `min`, `max`
This is useful for higher level dialect like OpenACC or OpenMP that can lower to the GPU dialect.
Differential Revision: https://reviews.llvm.org/D75766
* Adds GpuLaunchFuncToVulkanLaunchFunc conversion pass.
* Moves a serialization of the `spirv::Module` from LaunchFuncToVulkanCalls pass to newly created pass.
* Updates LaunchFuncToVulkanCalls instrumentation pass, adds `initVulkan` and `deinitVulkan` runtime calls.
* Adds `bindResource` call to bind specifc resource by the given descriptor set and descriptor binding.
* Eliminates static construction and desctruction of `VulkanRuntimeManager`.
Differential Revision: https://reviews.llvm.org/D75192
Summary:
Interfaces/ is the designated directory for these types of interfaces, and also removes the need for including them directly in IR/.
Differential Revision: https://reviews.llvm.org/D75886
The interfaces themselves aren't really analyses, they may be used by analyses though. Having them in Analysis can also create cyclic dependencies if an analysis depends on a specific dialect, that also provides one of the interfaces.
Differential Revision: https://reviews.llvm.org/D75867
This revision takes advantage of the empty AffineMap to specify the
0-D edge case. This allows removing a bunch of annoying corner cases
that ended up impacting users of Linalg.
Differential Revision: https://reviews.llvm.org/D75831
Summary:
The old interface was a temporary stopgap to allow for implementing simple LICM that took side effects of region operations into account. Now that MLIR has proper support for specifying memory effects, this interface can be deleted.
Differential Revision: https://reviews.llvm.org/D74441
Summary: This op mirrors the llvm.intr counterpart and allows lowering + type conversions in a progressive fashion.
Differential Revision: https://reviews.llvm.org/D75775
Summary:
This revision adds intrinsics for transpose, columnwise.load and columnwise.store
achieving full coverage of the llvm.matrix intrinsics.
Differential Revision: https://reviews.llvm.org/D75852
add convenience method for affine data copy generation for a loop body
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D75822
Summary:
New classes are added to ODS to enable specifying additional information on the arguments and results of an operation. These classes, `Arg` and `Res` allow for adding a description and a set of 'decorators' along with the constraint. This enables specifying the side effects of an operation directly on the arguments and results themselves.
Example:
```
def LoadOp : Std_Op<"load"> {
let arguments = (ins Arg<AnyMemRef, "the MemRef to load from",
[MemRead]>:$memref,
Variadic<Index>:$indices);
}
```
Differential Revision: https://reviews.llvm.org/D74440
This revision introduces the infrastructure for defining side-effects and attaching them to operations. This infrastructure allows for defining different types of side effects, that don't interact with each other, but use the same internal mechanisms. At the base of this is an interface that allows operations to specify the different effect instances that are exhibited by a specific operation instance. An effect instance is comprised of the following:
* Effect: The specific effect being applied.
For memory related effects this may be reading from memory, storing to memory, etc.
* Value: A specific value, either operand/result/region argument, the effect pertains to.
* Resource: This is a global entity that represents the domain within which the effect is being applied.
MLIR serves many different abstractions, which cover many different domains. Simple effects are may have very different context, for example writing to an in-memory buffer vs a database. This revision defines uses this infrastructure to define a set of initial MemoryEffects. The are effects that generally correspond to memory of some kind; Allocate, Free, Read, Write.
This set of memory effects will be used in follow revisions to generalize various parts of the compiler, and make others more powerful(e.g. DCE).
This infrastructure was originally proposed here:
https://groups.google.com/a/tensorflow.org/g/mlir/c/v2mNl4vFCUM
Differential Revision: https://reviews.llvm.org/D74439
add_llvm_library and add_llvm_executable may need to create new targets with
appropriate dependencies. As a result, it is not sufficient in some
configurations (namely LLVM_BUILD_LLVM_DYLIB=on) to only call
add_dependencies(). Instead, the explicit TableGen dependencies must
be passed to add_llvm_library() or add_llvm_executable() using the DEPENDS
keyword.
Differential Revision: https://reviews.llvm.org/D74930
In cmake, it is redundant to have a target list under target_link_libraries()
and add_dependency(). This patch removes the redundant dependency from
add_dependency().
Differential Revision: https://reviews.llvm.org/D74929
CMake allows calling target_link_libraries() without a keyword,
but this usage is not preferred when also called with a keyword,
and has surprising behavior. This patch explicitly specifies a
keyword when using target_link_libraries().
Differential Revision: https://reviews.llvm.org/D75725
This revision adds the first intrinsic for llvm.matrix.multiply.
This uses the more general `LLVM_OneResultOp` for now since the goal is
to use the
specific Matrix builders that @fhahn has created recently.
When piped through:
```
opt -O3 -enable-matrix | llc -O3 -march=x86-64 -mcpu=skylake-avx512
```
this has been verified to generate ymm instructions.
Additional function attribute support will be needed to generate proper
zmm instructions but at least things run end to end.
Benchmarking will be provided separately with the experimental
metaprogramming
[ModelBuilder](https://github.com/google/iree/tree/master/experimental/ModelBuilder)
tool when ready.