This reverts commit r285732.
This change introduced a new assertion failure in the following
testcase at -O2:
typedef short __v8hi __attribute__((__vector_size__(16)));
__v8hi foo(__v8hi &V1, __v8hi &V2, unsigned mask) {
__v8hi Result = V1;
if (mask & 0x80)
Result[0] = V2[0];
return Result;
}
llvm-svn: 285866
Summary:
It was detected that the reassociate pass could enter an inifite
loop when analysing dead code. Simply skipping to analyse basic
blocks that are dead avoids such problems (and as a side effect
we avoid spending time on optimising dead code).
The solution is using the same Reverse Post Order ordering of the
basic blocks when doing the optimisations, as when building the
precalculated rank map. A nice side-effect of this solution is
that we now know that we only try to do optimisations for blocks
with ranked instructions.
Fixes https://llvm.org/bugs/show_bug.cgi?id=30818
Reviewers: llvm-commits, davide, eli.friedman, mehdi_amini
Subscribers: dberlin
Differential Revision: https://reviews.llvm.org/D26154
llvm-svn: 285793
I think the former 'test50' had a typo making it functionally equivalent
to the former 'test49'; changed the predicate to provide more coverage.
llvm-svn: 285706
This patch introduces the combine:
(C1 shift (A add C2)) -> ((C1 shift C2) shift A)
iff A and C2 are both positive
If both A and C2 are know to be positive then we can safely split into 2 shifts, permitting the folding of the Inner shift.
Fix for the spec benchmark case mentioned by @nadav on PR15141 (assuming we can prove that the inputs as positive).
Differential Revision: https://reviews.llvm.org/D26000
llvm-svn: 285696
possible pointer-wrap-around concerns, in some cases.
Before this patch, collectConstStridedAccesses (part of interleaved-accesses
analysis) called getPtrStride with [Assume=false, ShouldCheckWrap=true] when
examining all candidate pointers. This is too conservative. Instead, this
patch makes collectConstStridedAccesses use an optimistic approach, calling
getPtrStride with [Assume=true, ShouldCheckWrap=false], and then, once the
candidate interleave groups have been formed, revisits the pointer-wrapping
analysis but only where it matters: namely, in groups that have gaps, and where
the gaps are not at the very end of the group (in which case the loop is
peeled). This second time getPtrStride is called with [Assume=false,
ShouldCheckWrap=true], but this could further be improved to using Assume=true,
once we also add the logic to track that we are not going to meet the scev
runtime checks threshold.
Differential Revision: https://reviews.llvm.org/D25276
llvm-svn: 285517
Try harder to detect obfuscated min/max patterns: the initial pattern was added with D9352 / rL236202.
There was a bug fix for PR27137 at rL264996, but I think we can do better by folding the corresponding
smax pattern and commuted variants.
The codegen tests demonstrate the effect of ValueTracking on the backend via SelectionDAGBuilder. We
can't expose these differences minimally in IR because we don't have smin/smax intrinsics for IR.
Differential Revision: https://reviews.llvm.org/D26091
llvm-svn: 285499
Summary:
This "pass" eagerly creates div and rem instructions even when only one
is needed -- it relies on a later pass (machine DCE?) to clean them up.
This is problematic not just from a cleanliness perspective (this pass
is running during CodeGenPrepare, so should leave the IR in a better
state), but it also creates a problem for instruction selection. If we
always have a div+rem, isel will always select a divrem instruction (if
possible), even when a single div or rem would do.
Specifically, in NVPTX, we want to compute rem from the output of div,
if available. But if a div is not available, we want to leave the rem
alone. This transformation is overeager if div is always available.
Because this code runs as part of CodeGenPrepare, it's nontrivial to
write a test for this change. But this will effectively be tested by
a later patch which adds the aforementioned change to NVPTX isel.
Reviewers: tra
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26088
llvm-svn: 285460
Summary:
In BypassSlowDivision's short-dividend path, we would create e.g.
udiv exact i32 %a, %b
"exact" here means that we are asserting that %a is a multiple of %b.
But we have no reason to believe this must be true -- this is just a
bug, as far as I can tell.
Reviewers: tra
Subscribers: jholewinski, llvm-commits
Differential Revision: https://reviews.llvm.org/D26097
llvm-svn: 285459
Fixes PR 30784. Discussed with Justin, who pointed out that
in the new PassManager infrastructure we can have more fine-grained
control on which analyses we want to preserve, but this is the
best we can do with the current infrastructure.
llvm-svn: 285380
Summary: LICM may hoist instructions to preheader speculatively. Before code generation, we need to sink down the hoisted instructions inside to loop if it's beneficial. This pass is a reverse of LICM: looking at instructions in preheader and sinks the instruction to basic blocks inside the loop body if basic block frequency is smaller than the preheader frequency.
Reviewers: hfinkel, davidxl, chandlerc
Subscribers: anna, modocache, mgorny, beanz, reames, dberlin, chandlerc, mcrosier, junbuml, sanjoy, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D22778
llvm-svn: 285308
After successfull horizontal reduction vectorization attempt for PHI node
vectorizer tries to update root binary op by combining vectorized tree
and the ReductionPHI node. But during vectorization this ReductionPHI
can be vectorized itself and replaced by the `undef` value, while the
instruction itself is marked for deletion. This 'marked for deletion'
PHI node then can be used in new binary operation, causing "Use still
stuck around after Def is destroyed" crash upon PHI node deletion.
Also the test is fixed to make it perform actual testing.
Differential Revision: https://reviews.llvm.org/D25671
llvm-svn: 285286
Summary:
Extends InstSimplify to handle both `x >=u x >> y` and `x >=u x udiv y`.
This is a folloup of rL258422 and
https://github.com/rust-lang/rust/pull/30917 where llvm failed to
optimize away the bounds checking in a binary search.
Patch by Arthur Silva!
Reviewers: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25941
llvm-svn: 285228
Summary: This patch introduces updateDiscriminator to DILocation so that it can be directly called by AddDiscriminator. It also makes it easier to update the discriminator later.
Reviewers: dnovillo, dblaikie, aprantl, echristo
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D25959
llvm-svn: 285207
Summary:
Select instruction annotation in IR PGO uses the edge count to infer the
branch count. It's currently placed in setInstrumentedCounts() where
no all the BB counts have been computed. This leads to wrong branch weights.
Move the annotation after all BB counts are populated.
Reviewers: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25961
llvm-svn: 285128
The original patch of the A->B->A BitCast optimization was reverted by r274094 because it may cause infinite loop inside compiler https://llvm.org/bugs/show_bug.cgi?id=27996.
The problem is with following code
xB = load (type B);
xA = load (type A);
+yA = (A)xB; B -> A
+zAn = PHI[yA, xA]; PHI
+zBn = (B)zAn; // A -> B
store zAn;
store zBn;
optimizeBitCastFromPhi generates
+zBn = (B)zAn; // A -> B
and expects it will be combined with the following store instruction to another
store zAn
Unfortunately before combineStoreToValueType is called on the store instruction, optimizeBitCastFromPhi is called on the new BitCast again, and this pattern repeats indefinitely.
optimizeBitCastFromPhi only generates BitCast for load/store instructions, only the BitCast before store can cause the reexecution of optimizeBitCastFromPhi, and BitCast before store can easily be handled by InstCombineLoadStoreAlloca.cpp. So the solution to the problem is if all users of a CI are store instructions, we should not do optimizeBitCastFromPhi on it. Then optimizeBitCastFromPhi will not be called on the new BitCast instructions.
Differential Revision: https://reviews.llvm.org/D23896
llvm-svn: 285116
When we predicate an instruction (div, rem, store) we place the instruction in
its own basic block within the vectorized loop. If a predicated instruction has
scalar operands, it's possible to recursively sink these scalar expressions
into the predicated block so that they might avoid execution. This patch sinks
as much scalar computation as possible into predicated blocks. We previously
were able to sink such operands only if they were extractelement instructions.
Differential Revision: https://reviews.llvm.org/D25632
llvm-svn: 285097
This adds a new function to DebugInfo.cpp that takes an llvm::Module
as input and removes all debug info metadata that is not directly
needed for line tables, thus effectively stripping all type and
variable information from the module.
The primary motivation for this feature was the bitcode work flow
(cf. http://lists.llvm.org/pipermail/llvm-dev/2016-June/100643.html
for more background). This is not wired up yet, but will be in
subsequent patches. For testing, the new functionality is exposed to
opt with a -strip-nonlinetable-debuginfo option.
The secondary use-case (and one that works right now!) is as a
reduction pass in bugpoint. I added two new bugpoint options
(-disable-strip-debuginfo and -disable-strip-debug-types) to control
the new features. By default it will first attempt to remove all debug
information, then only the type info, and then proceed to hack at any
remaining MDNodes.
Thanks to Adrian Prantl for stewarding this patch!
llvm-svn: 285094
Now that MemorySSA keeps track of whether MemoryUses are optimized, use
getClobberingMemoryAccess() to check MemoryUse memory dependencies since
it should no longer be so expensive.
This is a follow-up change to https://reviews.llvm.org/D25881
llvm-svn: 285080