uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
The stat cache became essentially useless ever since we started
validating all file entries in the PCH.
But the motivating reason for removing it now is that it also affected
correctness in this situation:
-You have a header without include guards (using "#pragma once" or #import)
-When creating the PCH:
-The same header is referenced in an #include with different filename cases.
-In the PCH, of course, we record only one file entry for the header file
-But we cache in the PCH file the stat info for both filename cases
-Then the source files are updated and the header file is updated in a way that
its size and modification time are the same but its inode changes
-When using the PCH:
-We validate the headers, we check that header file and we create a file entry with its current inode
-There's another #include with a filename with different case than the previously created file entry
-In order to get its stat info we go through the cached stat info of the PCH and we receive the old inode
-because of the different inodes, we think they are different files so we go ahead and include its contents.
Removing the stat cache will potentially break clients that are attempting to use the stat cache
as a way of avoiding having the actual input files available. If that use case is important, patches are welcome
to bring it back in a way that will actually work correctly (i.e., emit a PCH that is self-contained, coping with
literal strings, line/column computations, etc.).
This fixes rdar://5502805
llvm-svn: 167172
block, so the input files are validated early on, before we've
committed to loading the AST file. This (accidentally) fixed a but
wherein the main file used to generate the AST file would *not* be
validated by the existing validation logic.
At the moment, this leads to some duplication of filenames between the
source manager block and input-file blocks, as well as validation
logic. This will be handled via an upcoming patch.
llvm-svn: 166251
MacroInfo*. Instead of simply dumping an offset into the current file,
give each macro definition a proper ID with all of the standard
modules-remapping facilities. Additionally, when a macro is modified
in a subsequent AST file (e.g., #undef'ing a macro loaded from another
module or from a precompiled header), provide a macro update record
rather than rewriting the entire macro definition. This gives us
greater consistency with the way we handle declarations, and ties
together macro definitions much more cleanly.
Note that we're still not actually deserializing macro history (we
never were), but it's far easy to do properly now.
llvm-svn: 165560
the direct serialization of the linked-list structure. Instead, use a
scheme similar to how we handle redeclarations, with redeclaration
lists on the side. This addresses several issues:
- In cases involving mixing and matching of many categories across
many modules, the linked-list structure would not be consistent
across different modules, and categories would get lost.
- If a module is loaded after the class definition and its other
categories have already been loaded, we wouldn't see any categories
in the newly-loaded module.
llvm-svn: 149112
generational scheme for identifiers that avoids searching the hash
tables of a given module more than once for a given
identifier. Previously, loading any new module invalidated all of the
previous lookup results for all identifiers, causing us to perform the
lookups repeatedly.
llvm-svn: 148412
chains, again. The prior implementation was very linked-list oriented, and
the list-splicing logic was both fairly convoluted (when loading from
multiple modules) and failed to preserve a reasonable ordering for the
redeclaration chains.
This new implementation uses a simpler strategy, where we store the
ordered redeclaration chains in an array-like structure (indexed based
on the first declaration), and use that ordering to add individual
deserialized declarations to the end of the existing chain. That way,
the chain mimics the ordering from its modules, and a bug somewhere is
far less likely to result in a broken linked list.
llvm-svn: 148222
chains. The previous implementation relied heavily on the declaration
chain being stored as a (circular) linked list on disk, as it is in
memory. However, when deserializing from multiple modules, the
different chains could get mixed up, leading to broken declaration chains.
The new solution keeps track of the first and last declarations in the
chain for each module file. When we load a declaration, we search all
of the module files for redeclarations of that declaration, then
splice together all of the lists into a coherent whole (along with any
redeclarations that were actually parsed).
As a drive-by fix, (de-)serialize the redeclaration chains of
TypedefNameDecls, which had somehow gotten missed previously. Add a
test of this serialization.
This new scheme creates a redeclaration table that is fairly large in
the PCH file (on the order of 400k for Cocoa.h's 12MB PCH file). The
table is mmap'd in and searched via a binary search, but it's still
quite large. A future tweak will eliminate entries for declarations
that have no redeclarations anywhere, and should
drastically reduce the size of this table.
llvm-svn: 146841
a standard global/local scheme, so that submodule definitions will
eventually be able to refer to submodules in other top-level
modules. We'll need this functionality soonish.
llvm-svn: 145549
library, since modules cut across all of the libraries. Rename
serialization::Module to serialization::ModuleFile to side-step the
annoying naming conflict. Prune a bunch of ModuleMap.h includes that
are no longer needed (most files only needed the Module type).
llvm-svn: 145538
Introduce a FILE_SORTED_DECLS [de]serialization record that contains
a file sorted array of file-level DeclIDs in a PCH/Module.
The rationale is to allow "targeted" deserialization of decls inside
a range of a source file.
Cocoa PCH increased by 0.8%
Difference of creation time for Cocoa PCH is below the noise level.
llvm-svn: 143238
-Use an array of offsets for all preprocessed entities
-Get rid of the separate array of offsets for just macro definitions;
for references to macro definitions use an index inside the preprocessed
entities array.
-Deserialize each preprocessed entity lazily, at first request; not in bulk.
Paves the way for binary searching of preprocessed entities that will offer
efficiency and will simplify things on the libclang side a lot.
llvm-svn: 139809