This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
llvm-svn: 203083
PostGenericScheduler uses either the new machine model or the hazard
checker for top-down scheduling. Most of the infrastructure for PreRA
machine scheduling is reused.
With a some tuning, this should allow MachineScheduler to be default
for all ARM targets, including cortex-A9, using the new machine
model. Likewise, with additional tuning, it should be able to replace
PostRAScheduler for all targets.
The PostMachineScheduler pass does not currently run the
AntiDepBreaker. There is less need for it on targets that are already
running preRA MachineScheduler. I want to prove it's necessary before
committing to the maintenance burden.
The PostMachineScheduler also currently removes kill flags and adds
them all back later. This is a bit ridiculous. I'd prefer passes to
directly use a liveness utility than rely on flags.
A test case that enables this scheduler will be included in a
subsequent checkin that updates the A9 model.
llvm-svn: 198122
These helper classes take care of the book-keeping the drives the
GenericScheduler heuristics. It is likely that developers writing
target-specific schedulers that work similarly to GenericScheduler
will want to use these helpers too. The immediate goal is to develop a
GenericPostScheduler that can run in place of the old PostRAScheduler,
but will use the new machine model.
No functionality change intended.
llvm-svn: 196643
Not only does it trigger -Wparentheses, I think the assert actually
relies on incorrect operator precedence.
Also, the grammar as questionable, but I might not know enough about the
problem at hand.
llvm-svn: 196567
This allows a target to use MI-Sched as an in-order scheduler that
will model strict resource conflicts without defining a processor
itinerary. Instead, the target can now use the new per-operand machine
model and define in-order resources with BufferSize=0. For example,
this would allow restricting the type of operations that can be formed
into a dispatch group. (Normally NumMicroOps is sufficient to enforce
dispatch groups).
If the intent is to model latency in in-order pipeline, as opposed to
resource conflicts, then a resource with BufferSize=1 should be
defined instead.
This feature is only casually tested as there are no in-tree targets
using it yet. However, Hal will be experimenting with POWER7.
llvm-svn: 196517
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file. The memory leaks in this version have been fixed. Thanks
Alexey for pointing them out.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 195064
This change is incorrect. If you delete virtual destructor of both a base class
and a subclass, then the following code:
Base *foo = new Child();
delete foo;
will not cause the destructor for members of Child class. As a result, I observe
plently of memory leaks. Notable examples I investigated are:
ObjectBuffer and ObjectBufferStream, AttributeImpl and StringSAttributeImpl.
llvm-svn: 194997
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 194865
The global registry is used to allow command line override of the
scheduler selection, but does not work well as the normal selection
API. For example, the same LLVM process should be able to target
multiple targets or subtargets.
llvm-svn: 191071
This was an experimental scheduler a year ago. It's now used by
several subtargets, both in-order and out-of-order, and it
is about to be enabled by default for x86 and armv7. It will be the
new GenericScheduler for subtargets that don't provide their own
SchedulingStrategy.
llvm-svn: 191051
Arnold's idea.
I generally try to avoid stateful heuristics because it can make
debugging harder. However, we need a way to prevent the latency
priority from dominating, and it somewhat makes sense to schedule
aggressively for latency only within an issue group.
Swift in particular likes this, and it doesn't hurt anyone else:
| Benchmarks/MiBench/consumer-lame | 10.39% |
| Benchmarks/Misc/himenobmtxpa | 9.63% |
llvm-svn: 190360
Allow subtargets to customize the generic scheduling strategy.
This is convenient for targets that don't need to add new heuristics
by specializing the strategy.
llvm-svn: 190176
Fast register pressure tracking currently only takes effect during
bottom up scheduling. Forcing this is a bit faster and simpler for
targets that don't have many scheduling constraints and don't need
top-down scheduling.
llvm-svn: 190014
If the instruction window is < NumRegs/2, pressure tracking is not
likely to be effective. The scheduler has to process a very large
number of tiny blocks. We want this to be fast.
llvm-svn: 189991
Register pressure tracking is half the complexity of the
scheduler. It's useful to be able to turn it off for compile time and
performance comparisons.
llvm-svn: 189987
There was one case that we could hit a DebugValue where I didn't think
to check. DebugValues are evil. No checkinable test case, sorry. It's
an obvious fix.
llvm-svn: 189717
Created SUPressureDiffs array to hold the per node PDiff computed during DAG building.
Added a getUpwardPressureDelta API that will soon replace the old
one. Compute PressureDelta here from the precomputed PressureDiffs.
Updating for liveness will come next.
llvm-svn: 189640
Estimate the cyclic critical path within a single block loop. If the
acyclic critical path is longer, then the loop will exhaust OOO
resources after some number of iterations. If lag between the acyclic
critical path and cyclic critical path is longer the the time it takes
to issue those loop iterations, then aggressively schedule for
latency.
llvm-svn: 189120
When registers must be live throughout the scheduling region, increase
the limit for the register class. Once we exceed the original limit,
they will be spilled, and there's no point further reducing pressure.
This isn't a perfect heuristics but avoids a situation where the
scheduler could become trapped by trying to achieve the impossible.
llvm-svn: 187436
Replace the ill-defined MinLatency and ILPWindow properties with
with straightforward buffer sizes:
MCSchedMode::MicroOpBufferSize
MCProcResourceDesc::BufferSize
These can be used to more precisely model instruction execution if desired.
Disabled some misched tests temporarily. They'll be reenabled in a few commits.
llvm-svn: 184032
"Counts" refer to scaled resource counts within a region. CurrMOps is
simply the number of micro-ops to be issue in the current cycle.
llvm-svn: 184031
Heuristics compare the critical path in the scheduled code, called
ExpectedLatency, with the latency of instructions remaining to be
scheduled. There are two ways to look at remaining latency:
(1) Dependent latency includes the latency between unscheduled and
scheduled instructions.
(2) Independent latency is simply the height (bottom-up) or depth
(top-down) of instructions currently in the ready Q.
llvm-svn: 184029
Fixes PR15838. Need to check for blocks with nothing but dbg.value.
I'm not sure how to force this situation with a unit test. I tried to
reduce the test case in PR15838 (1k lines of metadata) but gave up.
llvm-svn: 180227
For now, we just reschedule instructions that use the copied vregs and
let regalloc elliminate it. I would really like to eliminate the
copies on-the-fly during scheduling, but we need a complete
implementation of repairIntervalsInRange() first.
The general strategy is for the register coalescer to eliminate as
many global copies as possible and shrink live ranges to be
extended-basic-block local. The coalescer should not have to worry
about resolving local copies (e.g. it shouldn't attemp to reorder
instructions). The scheduler is a much better place to deal with local
interference. The coalescer side of this equation needs work.
llvm-svn: 180193
The register allocator expects minimal physreg live ranges. Schedule
physreg copies accordingly. This is slightly tricky when they occur in
the middle of the scheduling region. For now, this is handled by
rescheduling the copy when its associated instruction is
scheduled. Eventually we may instead bundle them, but only if we can
preserve the bundles as parallel copies during regalloc.
llvm-svn: 179449
For now, just save the compile time since the ConvergingScheduler
heuristics don't use this analysis. We'll probably enable it later
after compile-time investigation.
llvm-svn: 178822
This verifies live intervals both before and after scheduling. It's
useful for anyone hacking on live interval update.
Note that we don't yet pass verification all the time. We don't yet
handle updating nonallocatable live intervals perfectly.
llvm-svn: 176685
This was an experimental option, but needs to be defined
per-target. e.g. PPC A2 needs to aggressively hide latency.
I converted some in-order scheduling tests to A2. Hal is working on
more test cases.
llvm-svn: 171946
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
This was found by MSVC10's STL debug mode on a test from the test suite. Sadly
std::is_heap isn't standard so there is no way to assert this without writing
our own heap verify, which looks like overkill to me.
llvm-svn: 168885
This is a simple, cheap infrastructure for analyzing the shape of a
DAG. It recognizes uniform DAGs that take the shape of bottom-up
subtrees, such as the included matrix multiplication example. This is
useful for heuristics that balance register pressure with ILP. Two
canonical expressions of the heuristic are implemented in scheduling
modes: -misched-ilpmin and -misched-ilpmax.
llvm-svn: 168773
This allows me to begin enabling (or backing out) misched by default
for one subtarget at a time. To run misched we typically want to:
- Disable SelectionDAG scheduling (use the source order scheduler)
- Enable more aggressive coalescing (until we decide to always run the coalescer this way)
- Enable MachineScheduler pass itself.
Disabling PostRA sched may follow for some subtargets.
llvm-svn: 167826
Uses the infrastructure from r167742 to support clustering instructure
that the target processor can "fuse". e.g. cmp+jmp.
Next step: target hook implementations with test cases, and enable.
llvm-svn: 167744
This infrastructure is generally useful for any target that wants to
strongly prefer two instructions to be adjacent after scheduling.
A following checkin will add target-specific hooks with unit
tests. Then this feature will be enabled by default with misched.
llvm-svn: 167742
This adds support for weak DAG edges to the general scheduling
infrastructure in preparation for MachineScheduler support for
heuristics based on weak edges.
llvm-svn: 167738
misched is disabled by default. With -enable-misched, these heuristics
balance the schedule to simultaneously avoid saturating processor
resources, expose ILP, and minimize register pressure. I've been
analyzing the performance of these heuristics on everything in the
llvm test suite in addition to a few other benchmarks. I would like
each heuristic check to be verified by a unit test, but I'm still
trying to figure out the best way to do that. The heuristics are still
in considerable flux, but as they are refined we should be rigorous
about unit testing the improvements.
llvm-svn: 167527
Allows the new machine model to be used for NumMicroOps and OutputLatency.
Allows the HazardRecognizer to be disabled along with itineraries.
llvm-svn: 165603
The Hexagon target decided to use a lot of functionality from the
target-independent scheduler. That's fine, and other targets should be
able to do the same. This reorg and API update makes that easy.
For the record, ScheduleDAGMI was not meant to be subclassed. Instead,
new scheduling algorithms should be able to implement
MachineSchedStrategy and be done. But if need be, it's nice to be
able to extend ScheduleDAGMI, so I also made that easier. The target
scheduler is somewhat more apt to break that way though.
llvm-svn: 163580
The logic for recomputing latency based on a ScheduleDAG edge was
shady. This bypasses the problem by requiring the client to provide
operand indices. This ensures consistent use of the machine model's
API.
llvm-svn: 162420
subtarget CPU descriptions and support new features of
MachineScheduler.
MachineModel has three categories of data:
1) Basic properties for coarse grained instruction cost model.
2) Scheduler Read/Write resources for simple per-opcode and operand cost model (TBD).
3) Instruction itineraties for detailed per-cycle reservation tables.
These will all live side-by-side. Any subtarget can use any
combination of them. Instruction itineraries will not change in the
near term. In the long run, I expect them to only be relevant for
in-order VLIW machines that have complex contraints and require a
precise scheduling/bundling model. Once itineraries are only actively
used by VLIW-ish targets, they could be replaced by something more
appropriate for those targets.
This tablegen backend rewrite sets things up for introducing
MachineModel type #2: per opcode/operand cost model.
llvm-svn: 159891
The Hazard checker implements in-order contraints, or interlocked
resources. Ready instructions with hazards do not enter the available
queue and are not visible to other heuristics.
The major code change is the addition of SchedBoundary to encapsulate
the state at the top or bottom of the schedule, including both a
pending and available queue.
The scheduler now counts cycles in sync with the hazard checker. These
are minimum cycle counts based on known hazards.
Targets with no itinerary (x86_64) currently remain at cycle 0. To fix
this, we need to provide some maximum issue width for all targets. We
also need to add the concept of expected latency vs. minimum latency.
llvm-svn: 157427
Introduce the basic strategy for register pressure scheduling.
1) Respect target limits at all times.
2) Indentify critical register classes (pressure sets).
Track pressure within the scheduled region.
Avoid increasing scheduled pressure for critical registers.
3) Avoid exceeding the max pressure of the region prior to scheduling.
Added logic for picking between the top and bottom ready Q's based on
regpressure heuristics.
Status: functional but needs to be asjusted to achieve good results.
llvm-svn: 157006
Prioritize the instruction that comes closest to keeping pressure
under the target's limit. Then prioritize instructions that avoid
increasing the max pressure in the scheduled region. The max pressure
heuristic is a tad aggressive. Later I'll fix it to consider the
unscheduled pressure as well.
WIP: This is mostly functional but untested and not likely to do much good yet.
llvm-svn: 156574
New flags: -misched-topdown, -misched-bottomup. They can be used with
the default scheduler or with -misched=shuffle. Without either
topdown/bottomup flag -misched=shuffle now alternates scheduling
direction.
LiveIntervals update is unimplemented with bottom-up scheduling, so
only -misched-topdown currently works.
Capped the ScheduleDAG hierarchy with a concrete ScheduleDAGMI class.
ScheduleDAGMI is aware of the top and bottom of the unscheduled zone
within the current region. Scheduling policy can be plugged into
the ScheduleDAGMI driver by implementing MachineSchedStrategy.
ConvergingScheduler is now the default scheduling algorithm.
It exercises the new driver but still does no reordering.
llvm-svn: 152700
Allow targets to provide their own schedulers (subclass of
ScheduleDAGInstrs) to the misched pass. Select schedulers using
-misched=...
llvm-svn: 152278
ScheduleDAG is responsible for the DAG: SUnits and SDeps. It provides target hooks for latency computation.
ScheduleDAGInstrs extends ScheduleDAG and defines the current scheduling region in terms of MachineInstr iterators. It has access to the target's scheduling itinerary data. ScheduleDAGInstrs provides the logic for building the ScheduleDAG for the sequence of MachineInstrs in the current region. Target's can implement highly custom schedulers by extending this class.
ScheduleDAGPostRATDList provides the driver and diagnostics for current postRA scheduling. It maintains a current Sequence of scheduled machine instructions and logic for splicing them into the block. During scheduling, it uses the ScheduleHazardRecognizer provided by the target.
Specific changes:
- Removed driver code from ScheduleDAG. clearDAG is the only interface needed.
- Added enterRegion/exitRegion hooks to ScheduleDAGInstrs to delimit the scope of each scheduling region and associated DAG. They should be used to setup and cleanup any region-specific state in addition to the DAG itself. This is necessary because we reuse the same ScheduleDAG object for the entire function. The target may extend these hooks to do things at regions boundaries, like bundle terminators. The hooks are called even if we decide not to schedule the region. So all instructions in a block are "covered" by these calls.
- Added ScheduleDAGInstrs::begin()/end() public API.
- Moved Sequence into the driver layer, which is specific to the scheduling algorithm.
llvm-svn: 152208
Affect on SD scheduling and postRA scheduling:
Printing the DAG will display the nodes in top-down topological order.
This matches the order within the MBB and makes my life much easier in general.
Affect on misched:
We don't need to track virtual register uses at all. This is awesome.
I also intend to rely on the SUnit ID as a topo-sort index. So if A < B then we cannot have an edge B -> A.
llvm-svn: 151135
Creates a configurable regalloc pipeline.
Ensure specific llc options do what they say and nothing more: -reglloc=... has no effect other than selecting the allocator pass itself. This patch introduces a new umbrella flag, "-optimize-regalloc", to enable/disable the optimizing regalloc "superpass". This allows for example testing coalscing and scheduling under -O0 or vice-versa.
When a CodeGen pass requires the MachineFunction to have a particular property, we need to explicitly define that property so it can be directly queried rather than naming a specific Pass. For example, to check for SSA, use MRI->isSSA, not addRequired<PHIElimination>.
CodeGen transformation passes are never "required" as an analysis
ProcessImplicitDefs does not require LiveVariables.
We have a plan to massively simplify some of the early passes within the regalloc superpass.
llvm-svn: 150226
around within a basic block while maintaining live-intervals.
Updated ScheduleTopDownLive in MachineScheduler.cpp to use the moveInstr API
when reordering MIs.
llvm-svn: 149147