Summary:
XRay had been assuming that the previous section is the "text" section
of the function when lowering the instrumentation map. Unfortunately
this is not a safe assumption, because we may be coming from lowering
debug type information for the function being lowered.
This fixes an issue with combining -gsplit-dwarf, -generate-type-units,
-debug-compile and -fxray-instrument for sole member functions. When the
split dwarf section is stripped, we're left with references from the
xray_instr_map to the debug section. The change now uses the function's
symbol instead of the previous section's start symbol.
We found the bug while attempting to strip the split debug sections off
an XRay-instrumented object file, which had a peculiar edge-case for
single-function classes where the single function is being lowered.
Because XRay had assocaited the instrumentation map for a function to
the debug types section instead of the function's section, the objcopy
call will fail due to the misplaced reference from the xray_instr_map
section.
Reviewers: pcc, dblaikie, echristo
Subscribers: llvm-commits, aprantl
Differential Revision: https://reviews.llvm.org/D37791
llvm-svn: 313233
Since users typically don't really care about the .dwo / non.dwo
distinction, this patch makes it so dwarfdump --debug-<info,...> dumps
.debug_info and (if available) also .debug_info.dwo. This simplifies
the command line interface (I've removed all dwo-specific dump
options) and makes the tool friendlier to use.
Differential Revision: https://reviews.llvm.org/D37771
llvm-svn: 313207
Previously we used a size of '1' for VLAs because we weren't sure what
MSVC did. However, MSVC does support declaring an array without a size,
for which it emits an array type with a size of zero. Clang emits the
same DI metadata for VLAs and arrays without bound, so we would describe
arrays without bound as having one element. This lead to Microsoft
debuggers only printing a single element.
Emitting a size of zero appears to cause these debuggers to search the
symbol information to find a definition of the variable with accurate
array bounds.
Fixes http://crbug.com/763580
llvm-svn: 313203
Summary:
To improve CodeView quality for static member functions, we need to make the
static explicit. In addition to a small change in LLVM's CodeViewDebug to
return the appropriate MethodKind, this requires a small change in Clang to
note the staticness in the debug info metadata.
Subscribers: aprantl, hiraditya
Differential Revision: https://reviews.llvm.org/D37715
llvm-svn: 313192
This flag is unnecessary for testing because we can get the coverage
we need by adjusting CU attributes.
Differential Revision: https://reviews.llvm.org/D37725
llvm-svn: 313079
A prologue-end line record is emitted with an incorrect associated address,
which causes a debugger to show the beginning of function body to be inside
the prologue.
Patch written by Carlos Alberto Enciso.
Differential Revision: https://reviews.llvm.org/D37625
llvm-svn: 313047
As discussed on llvm-dev in
http://lists.llvm.org/pipermail/llvm-dev/2017-September/117301.html
this changes the command line interface of llvm-dwarfdump to match the
one used by the dwarfdump utility shipping on macOS. In addition to
being shorter to type this format also has the advantage of allowing
more than one section to be specified at the same time.
In a nutshell, with this change
$ llvm-dwarfdump --debug-dump=info
$ llvm-dwarfdump --debug-dump=apple-objc
becomes
$ dwarfdump --debug-info --apple-objc
Differential Revision: https://reviews.llvm.org/D37714
llvm-svn: 312970
S_UDT records are basically the "bridge" between the debugger's
expression evaluator and the type information. If you type
(Foo*)nullptr into the watch window, the debugger looks for an
S_UDT record named Foo. If it can find one, it displays your type.
Otherwise you get an error.
We have always understood this to mean that if you have code like
this:
struct A {
int X;
};
struct B {
typedef A AT;
AT Member;
};
that you will get 3 S_UDT records. "A", "B", and "B::AT". Because
if you were to type (B::AT*)nullptr into the debugger, it would
need to find an S_UDT record named "B::AT".
But "B::AT" is actually the S_UDT record that would be generated
if B were a namespace, not a struct. So the debugger needs to be
able to distinguish this case. So what it does is:
1. Look for an S_UDT named "B::AT". If it finds one, it knows
that AT is in a namespace.
2. If it doesn't find one, split at the scope resolution operator,
and look for an S_UDT named B. If it finds one, look up the type
for B, and then look for AT as one of its members.
With this algorithm, S_UDT records for nested typedefs are not just
unnecessary, but actually wrong!
The results of implementing this in clang are dramatic. It cuts
our /DEBUG:FASTLINK PDB sizes by more than 50%, and we go from
being ~20% larger than MSVC PDBs on average, to ~40% smaller.
It also slightly speeds up link time. We get about 10% faster
links than without this patch.
Differential Revision: https://reviews.llvm.org/D37410
llvm-svn: 312583
It solves issue of wrong section index evaluating for ranges when
base address is used.
Based on David Blaikie's patch D36097.
Differential revision: https://reviews.llvm.org/D37214
llvm-svn: 312477
Debug information can be, and was, corrupted when the runtime
remainder loop was fully unrolled. This is because a !null node can
be created instead of a unique one describing the loop. In this case,
the original node gets incorrectly updated with the NewLoopID
metadata.
In the case when the remainder loop is going to be quickly fully
unrolled, there isn't the need to add loop metadata for it anyway.
Differential Revision: https://reviews.llvm.org/D37338
llvm-svn: 312471
We have llvm-readobj for dumping CodeView from object files, and
llvm-pdbutil has always been more focused on PDB. However,
llvm-pdbutil has a lot of useful options for summarizing debug
information in aggregate and presenting high level statistical
views. Furthermore, it's arguably better as a testing tool since
we don't have to write tests to conform to a state-machine like
structure where you match multiple lines in succession, each
depending on a previous match. llvm-pdbutil dumps much more
concisely, so it's possible to use single-line matches in many
cases where as with readobj tests you have to use multi-line
matches with an implicit state machine.
Because of this, I'm adding object file support to llvm-pdbutil.
In fact, this mirrors the cvdump tool from Microsoft, which also
supports both object files and pdb files. In the future we could
perhaps rename this tool llvm-cvutil.
In the meantime, this allows us to deep dive into object files
the same way we already can with PDB files.
llvm-svn: 312358
Issues addressed since original review:
- Moved removal of dead instructions found by
LiveIntervals::shrinkToUses() outside of loop iterating over
instructions to avoid instructions being deleted while pointed to by
iterator.
- Fixed ARMLoadStoreOptimizer bug exposed by this change in r311907.
- The pass no longer forwards COPYs to physical register uses, since
doing so can break code that implicitly relies on the physical
register number of the use.
- The pass no longer forwards COPYs to undef uses, since doing so
can break the machine verifier by creating LiveRanges that don't
end on a use (since the undef operand is not considered a use).
[MachineCopyPropagation] Extend pass to do COPY source forwarding
This change extends MachineCopyPropagation to do COPY source forwarding.
This change also extends the MachineCopyPropagation pass to be able to
be run during register allocation, after physical registers have been
assigned, but before the virtual registers have been re-written, which
allows it to remove virtual register COPY LiveIntervals that become dead
through the forwarding of all of their uses.
llvm-svn: 312328
This adds a new command line option, -udt-stats, which breaks
down the stats of S_UDT records. These are one of the biggest
contributors to the size of /DEBUG:FASTLINK PDBs, so they need
some additional tools to be able to analyze their usage. This
option will dig into each S_UDT record and determine what kind
of record it points to, and then break down the statistics by
the target type. The goal here is to identify how our object
files differ from MSVC object files in S_UDT records, so that
we can output fewer of them and reach size parity.
llvm-svn: 312276
It caused PR34387: Assertion failed: (RegNo < NumRegs && "Attempting to access record for invalid register number!")
> Issues identified by buildbots addressed since original review:
> - Fixed ARMLoadStoreOptimizer bug exposed by this change in r311907.
> - The pass no longer forwards COPYs to physical register uses, since
> doing so can break code that implicitly relies on the physical
> register number of the use.
> - The pass no longer forwards COPYs to undef uses, since doing so
> can break the machine verifier by creating LiveRanges that don't
> end on a use (since the undef operand is not considered a use).
>
> [MachineCopyPropagation] Extend pass to do COPY source forwarding
>
> This change extends MachineCopyPropagation to do COPY source forwarding.
>
> This change also extends the MachineCopyPropagation pass to be able to
> be run during register allocation, after physical registers have been
> assigned, but before the virtual registers have been re-written, which
> allows it to remove virtual register COPY LiveIntervals that become dead
> through the forwarding of all of their uses.
llvm-svn: 312178
Previously we would just describe the first register and then call it
quits. This patch emits fragment expressions for each register.
<rdar://problem/34075307>
llvm-svn: 312169
Issues identified by buildbots addressed since original review:
- Fixed ARMLoadStoreOptimizer bug exposed by this change in r311907.
- The pass no longer forwards COPYs to physical register uses, since
doing so can break code that implicitly relies on the physical
register number of the use.
- The pass no longer forwards COPYs to undef uses, since doing so
can break the machine verifier by creating LiveRanges that don't
end on a use (since the undef operand is not considered a use).
[MachineCopyPropagation] Extend pass to do COPY source forwarding
This change extends MachineCopyPropagation to do COPY source forwarding.
This change also extends the MachineCopyPropagation pass to be able to
be run during register allocation, after physical registers have been
assigned, but before the virtual registers have been re-written, which
allows it to remove virtual register COPY LiveIntervals that become dead
through the forwarding of all of their uses.
llvm-svn: 312154
This change simplifies code that has to deal with
DIGlobalVariableExpression and mirrors how we treat DIExpressions in
debug info intrinsics. Before this change there were two ways of
representing empty expressions on globals, a nullptr and an empty
!DIExpression().
If someone needs to upgrade out-of-tree testcases:
perl -pi -e 's/(!DIGlobalVariableExpression\(var: ![0-9]*)\)/\1, expr: !DIExpression())/g' <MYTEST.ll>
will catch 95%.
llvm-svn: 312144
Summary:
Based on Fred's patch here: https://reviews.llvm.org/D6771
I can't seem to commandeer the old review, so I'm creating a new one.
With that change the locations exrpessions are pretty printed inline in the
DIE tree. The output looks like this for debug_loc entries:
DW_AT_location [DW_FORM_data4] (0x00000000
0x0000000000000001 - 0x000000000000000b: DW_OP_consts +3
0x000000000000000b - 0x0000000000000012: DW_OP_consts +7
0x0000000000000012 - 0x000000000000001b: DW_OP_reg0 RAX, DW_OP_piece 0x4
0x000000000000001b - 0x0000000000000024: DW_OP_breg5 RDI+0)
And like this for debug_loc.dwo entries:
DW_AT_location [DW_FORM_sec_offset] (0x00000000
Addr idx 2 (w/ length 190): DW_OP_consts +0, DW_OP_stack_value
Addr idx 3 (w/ length 23): DW_OP_reg0 RAX, DW_OP_piece 0x4)
Simple locations without ranges are printed inline:
DW_AT_location [DW_FORM_block1] (DW_OP_reg4 RSI, DW_OP_piece 0x4, DW_OP_bit_piece 0x20 0x0)
The debug_loc(.dwo) dumping in changed accordingly to factor the code.
Reviewers: dblaikie, aprantl, friss
Subscribers: mgorny, javed.absar, hiraditya, llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D37123
llvm-svn: 312042
Summary:
Some variables show up in Visual Studio as "optimized out" even in -O0
-Od builds. This change fixes two issues that would cause this to
happen. The first issue is that not all DIExpressions we generate were
recognized by the CodeView writer. This has been addressed by adding
support for DW_OP_constu, DW_OP_minus, and DW_OP_plus. The second
issue is that we had no way to encode DW_OP_deref in CodeView. We get
around that by changinge the type we encode in the debug info to be
a reference to the type in the source code.
This fixes PR34261.
The reland adds two extra checks to the original: It checks if the
DbgVariableLocation is valid before checking any of its fields, and
it only emits ranges with nonzero registers.
Reviewers: aprantl, rnk, zturner
Reviewed By: rnk
Subscribers: mgorny, llvm-commits, aprantl, hiraditya
Differential Revision: https://reviews.llvm.org/D36907
llvm-svn: 312034
Summary:
Some variables show up in Visual Studio as "optimized out" even in -O0
-Od builds. This change fixes two issues that would cause this to
happen. The first issue is that not all DIExpressions we generate were
recognized by the CodeView writer. This has been addressed by adding
support for DW_OP_constu, DW_OP_minus, and DW_OP_plus. The second
issue is that we had no way to encode DW_OP_deref in CodeView. We get
around that by changinge the type we encode in the debug info to be
a reference to the type in the source code.
This fixes PR34261.
Reviewers: aprantl, rnk, zturner
Reviewed By: rnk
Subscribers: mgorny, llvm-commits, aprantl, hiraditya
Differential Revision: https://reviews.llvm.org/D36907
llvm-svn: 311957
S_UDT symbols are the debugger's "index" for all the structs,
typedefs, classes, and enums in a program. If any of those
structs/classes don't have a complete declaration, or if there
is a typedef to something that doesn't have a complete definition,
then emitting the S_UDT is unhelpful because it doesn't give
the debugger enough information to do anything useful. On the
other hand, it results in a huge size blow-up in the resulting
PDB, which is exacerbated by an order of magnitude when linking
with /DEBUG:FASTLINK.
With this patch, we drop S_UDT records for types that refer either
directly or indirectly (e.g. through a typedef, pointer, etc) to
a class/struct/union/enum without a complete definition. This
brings us about 50% of the way towards parity with /DEBUG:FASTLINK
PDBs generated from cl-compiled object files.
Differential Revision: https://reviews.llvm.org/D37162
llvm-svn: 311904
Summary:
Most DIExpressions are empty or very simple. When they are complex, they
tend to be unique, so checking them inline is reasonable.
This also avoids the need for CodeGen passes to append to the
llvm.dbg.mir named md node.
See also PR22780, for making DIExpression not be an MDNode.
Reviewers: aprantl, dexonsmith, dblaikie
Subscribers: qcolombet, javed.absar, eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D37075
llvm-svn: 311594
This adds support for dumping a summary of module symbols
and CodeView debug chunks. This option prints a table for
each module of all of the symbols that occurred in the module
and the number of times it occurred and total byte size. Then
at the end it prints the totals for the entire file.
Additionally, this patch adds the -jmc (just my code) option,
which suppresses modules which are from external libraries or
linker imports, so that you can focus only on the object files
and libraries that originate from your own source code.
llvm-svn: 311338
Re-committing after r311325 fixed an unintentional use of '#' comments in
clang.
The '#' token is not a comment for all targets (on ARM and AArch64 it marks an
immediate operand), so we shouldn't treat it as such.
Comments are already converted to AsmToken::EndOfStatement by
AsmLexer::LexLineComment, so this check was unnecessary.
Differential Revision: https://reviews.llvm.org/D36405
llvm-svn: 311326
widely used processors.
This occured to me when I saw that we were generating 'inc' and 'dec'
when for Haswell and newer we shouldn't. However, there were a few "X is
slow" things that we should probably just set.
I've avoided any of the "X is fast" features because most of those would
be pretty serious regressions on processors where X isn't actually fast.
The slow things are likely to be negligible costs on processors where
these aren't slow and a significant win when they are slow.
In retrospect this seems somewhat obvious. Not sure why we didn't do
this a long time ago.
Differential Revision: https://reviews.llvm.org/D36947
llvm-svn: 311318
They won't affect the DWARF output, but they will mess with the
sorting of the fragments. This fixes the crash reported in PR34159.
https://bugs.llvm.org/show_bug.cgi?id=34159
llvm-svn: 311217
This patch teaches the SDag type legalizer how to split up debug info for
integer values that are split into a hi and lo part.
(re-commit)
Differential Revision: https://reviews.llvm.org/D36805
llvm-svn: 311181
This patch teaches the SDag type legalizer how to split up debug info for
integer values that are split into a hi and lo part.
Differential Revision: https://reviews.llvm.org/D36805
llvm-svn: 311102
Debug information for TLS variables on MIPS might have R_MIPS_TLS_DTPREL32
or R_MIPS_TLS_DTPREL64 relocations. This patch adds a support for such
relocations in the `RelocVisitor`.
llvm-svn: 311031
The %T lit expansion expands to a common directory shared between all the tests in the same directory, which is unexpected and unintuitive, and more importantly, it's been a source of subtle race conditions and flaky tests. In https://reviews.llvm.org/D35396, it was agreed that it would be best to simply ban %T and only keep %t, which is unique to each test. When a test needs a temporary directory, it can just create one using mkdir %t.
This patch removes %T in llvm.
Differential Revision: https://reviews.llvm.org/D36495
llvm-svn: 310953
Teaches llvm-dwarfdump to print section index and name of range
when it dumps .debug_info.
Differential revision: https://reviews.llvm.org/D36313
llvm-svn: 310915
The '#' token is not a comment for all targets (on ARM and AArch64 it marks an
immediate operand), so we shouldn't treat it as such.
Comments are already converted to AsmToken::EndOfStatement by
AsmLexer::LexLineComment, so this check was unnecessary.
Differential Revision: https://reviews.llvm.org/D36405
llvm-svn: 310457
For some reason I didn't see this failure the first time. The
output format changed slightly, so we just have to update the
test for the new format.
llvm-svn: 310442
Previously we limited ourselves to only emitting nested classes, but we
need other kinds of types as well.
This fixes the Visual Studio STL visualizers, so that users can
visualize std::string and other objects.
llvm-svn: 310410
Summary:
MIRParserImpl::computeFunctionProperties uses MRI.getNumVirtRegs() to
set the NoVReg property. By adding a bunch of registers to the MIR test
cases, the NoVReg property is not set when importing the MIR. Otherwise
NoVReg is set after instruction selection while the machine instructions
still contain virtual registers, causing expensive checks to fail.
Reviewers: efriedma, MatzeB, aprantl
Reviewed By: MatzeB, aprantl
Subscribers: aemerson, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D36152
llvm-svn: 310178
This extends the native reader to enable llvm-pdbutil to list the enums in a
PDB and it includes a simple test. It does not yet list the values in the
enumerations, which requires an actual implementation of
NativeEnumSymbol::FindChildren.
To exercise this code, use a command like:
llvm-pdbutil pretty -native -enums foo.pdb
Differential Revision: https://reviews.llvm.org/D35738
llvm-svn: 310144
Image section headers are stored in the DBI stream, but we
had no way to dump them. This patch adds dumping support,
along with some tests that LLD actually dumps them correctly.
Differential Revision: https://reviews.llvm.org/D36332
llvm-svn: 310107
This is similar to what we are doing in "regular" SROA and creates
DW_OP_LLVM_fragment operations to describe the resulting variables.
rdar://problem/33654891
llvm-svn: 310014
The debug value live intervals computed by Live Debug Variables may extend
beyond the range of the debug location's lexical scope. In this case,
splitting of an interval can result in an interval outside of the scope being
created, causing extra unnecessary DBG_VALUEs to be emitted. To prevent this,
trim the intervals to the lexical scope.
This resolves PR33730.
Reviewers: aprantl
Differential Revision: https://reviews.llvm.org/D35953
llvm-svn: 309933
The PDB reserves certain blocks for the FPM that describe which
blocks in the file are allocated and which are free. We weren't
filling that out at all, and in some cases we were even stomping
it with incorrect data. This patch writes a correct FPM.
Differential Revision: https://reviews.llvm.org/D36235
llvm-svn: 309896
Recently problems have been discovered in the way we write the FPM
(free page map). In order to fix this, we first need to establish
a baseline about what a correct FPM looks like using an MSVC
generated PDB, so that we can then make our own generated PDBs
match. And in order to do this, the dumper needs a mode where it
can dump an FPM so that we can write tests for it.
This patch adds a command to dump the FPM, as well as a test against
a known-good PDB.
llvm-svn: 309894
Followup to r309570, fixing it slightly differently (ranges_base and
addr_base should never be read from a DWO file - so there shouldn't be
any issue with 'overriding' the values - conditionalize the code and
assert that the values aren't being overriden).
llvm-svn: 309879
instead of using the deprecated offset field of DBG_VALUE.
This has no observable effect on the generated DWARF, but the
assembler comments will look different.
rdar://problem/33580047
llvm-svn: 309773
In the last half-dozen commits to LLVM I removed code that became dead
after removing the offset parameter from llvm.dbg.value gradually
proceeding from IR towards the backend. Before I can move on to
DwarfDebug and friends there is one last side-called offset I need to
remove: This patch modifies PrologEpilogInserter's use of the
DBG_VALUE's offset argument to use a DIExpression instead. Because the
PrologEpilogInserter runs at the Machine level I had to play a little
trick with a named llvm.dbg.mir node to get the DIExpressions to print
in MIR dumps (which print the llvm::Module followed by the
MachineFunction dump).
I also had to add rudimentary DwarfExpression support to CodeView and
as a side-effect also fixed a bug (CodeViewDebug::collectVariableInfo
was supposed to give up on variables with complex DIExpressions, but
would fail to do so for fragments, which are also modeled as
DIExpressions).
With this last holdover removed we will have only one canonical way of
representing offsets to debug locations which will simplify the code
in DwarfDebug (and future versions of CodeViewDebug once it starts
handling more complex expressions) and make it easier to reason about.
This patch is NFC-ish: All test case changes are for assembler
comments and the binary output does not change.
rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D36125
llvm-svn: 309751
Summary:
We already have information about static alloca stack locations in our
side table. Emitting instructions for them is inefficient, and it only
happens when the address of the alloca has been materialized within the
current block, which isn't often.
Reviewers: aprantl, probinson, dblaikie
Subscribers: jfb, dschuff, sbc100, jgravelle-google, hiraditya, llvm-commits, aheejin
Differential Revision: https://reviews.llvm.org/D36117
llvm-svn: 309729
Chromium's gold build seems to have trouble with this (gold produces
errors) - not sure if it's gold that's not coping with the valid
representation, or a bug in the implementation in LLVM, etc.
llvm-svn: 309630
When the first instruction of a basic block has no location (consider a
LEA materializing the address of an alloca for a call), we want to start
the line table for the block with the first valid source location in the
block. We need to ignore DBG_VALUE instructions during this scan to get
decent line tables.
llvm-svn: 309628
Missed the resetting base address selections when going from a base
address version to zero base address for non-base-addressed entries.
llvm-svn: 309529
(from comments in the test)
Group ranges in a range list that apply to the same section and use a base
address selection entry to reduce the number of relocations to one reloc per
section per range list. DWARF5 debug_rnglist will be more efficient than this
in terms of relocations, but it's still better than one reloc per entry in a
range list.
This is an object/executable size tradeoff - shrinking objects, but growing
the linked executable. In one large binary tested, total object size (not just
debug info) shrank by 16%, entirely relocation entries. Linked executable
grew by 4%. This was with compressed debug info in the objects, uncompressed
in the linked executable. Without compression in the objects, the win would be
smaller (the growth of debug_ranges itself would be more significant).
llvm-svn: 309526
If you've archived the DWP file somewhere it's probably useful to be
able to just tell llvm-symbolizer where it is when you're symbolizing
stack traces from the binary.
This only provides a mechanism for specifying a single DWP file, good if
you're symbolizing a program with a single DWP file, but it's likely if
the program is dynamically linked that you might have a DWP for each
dynamic library - in which case this feature won't help (at least as
it's surfaced in llvm-symbolizer for now) - in theory it could be
extended to specify a collection of DWP files that could all be
consulted for split CU hash resolution.
llvm-svn: 309498
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.
rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951
llvm-svn: 309426
This can come up in ThinLTO & wastes space & makes degenerate IR.
As per the added FIXME, ultimately, local imported entities should hang
off the function and that way the imported entity list on the CU can be
tested for emptiness like all the other CU lists.
(function-attached local imported entities are probably also the best
path forward for fixing how imported entities are handled both in
cross-module use (currently, while ThinLTO preserves the imported
entities, they would not get used at the imported inlined location -
only in the abstract origin that appears in the partial CU created by
the import (which isn't emitted under Fission due to cross-CU
limitations there)) and to reduce the number of points where imported
entities are emitted (they're currently emitted into every inlined
instance, concrete instance, and abstract origin - they should only go
in teh abstract origin if there is one, otherwise in the concrete
instance - but this requires lots of delayed handling and wiring up,
same as abstract variables & subprograms))
llvm-svn: 309354
Local imported entities at the top level of a subprogram were being
handled differently from those in nested scopes - that different
handling would cause pseudo concrete out-of-line definitions to be
created (but without any of their attributes, nor an abstract_origin) in
the case where there was no real concrete definition.
These local imported entities also only appeared in the concrete
definition where those imported entities in nested scopes appear in all
cases (abstract, concrete, and inlined). This change at least makes top
level case handle the same as the others - though there's a FIXME to
improve this to /only/ emit them into the abstract origin (though this
requires more plumbing - like the abstract subprogram and variable
handling that must defer population until the end of the unit to
discover if there is an abstract origin, or only a standalone concrete
definition).
llvm-svn: 309237
This is a better fix than r308708 for the problem introduced in
r304020. It restores the skeleton CU testcases modified by that commit
to their original form and most importantly ensures that
frontend-generated skeleton CUs (such as used to point to Clang
modules) come after the regular CUs. This broke for DICompileUnit
nodes that don't have any immediate children because they are now
constructed lazily instead of the order in which they are listed in
!llvm.dbg.cu. After this commit we still don't guarantee that order,
but we do guarantee that empty skeletons come last.
Shipping versions of LLDB are very sensitive to the ordering of
CUs. I'll track a fix for LLDB to be more permissive separately.
This fixes a test failure in the LLDB testsuite.
rdar://problem/33357252
llvm-svn: 309154
The PDB "symbol stream" actually contains symbol records for the publics
and the globals stream. The globals and publics streams are essentially
hash tables that point into a single stream of records. In order to
match cvdump's behavior, we need to only dump symbol records referenced
from the hash table. This patch implements that, and then implements
global stream dumping, since it's just a subset of public stream
dumping.
Now we shouldn't see S_PROCREF or S_GDATA32 records when dumping
publics, and instead we should see those record in the globals stream.
llvm-svn: 309066
DIImportedEntity has a line number, but not a file field. To determine
the decl_line/decl_file we combine the line number from the
DIImportedEntity with the file from the DIImportedEntity's scope. This
does not work correctly when the parent scope is a DINamespace or a
DIModule, both of which do not have a source file.
This patch adds a file field to DIImportedEntity to unambiguously
identify the source location of the using/import declaration. Most
testcase updates are mechanical, the interesting one is the removal of
the FIXME in test/DebugInfo/Generic/namespace.ll.
This fixes PR33822. See https://bugs.llvm.org/show_bug.cgi?id=33822
for more context.
<rdar://problem/33357889>
https://bugs.llvm.org/show_bug.cgi?id=33822
Differential Revision: https://reviews.llvm.org/D35583
llvm-svn: 308398
Summary:
This removes the CVTypeVisitor updater and verifier classes. They were
made dead by the minimal type dumping refactoring. Replace them with a
single function that takes a type record and produces a hash. Call this
from the minimal type dumper and compare the hash.
I also noticed that the microsoft-pdb reference repository uses a basic
CRC32 for records that aren't special. We already have an implementation
of that CRC ready to use, because it's used in COFF for ICF.
I'll make LLD call this hashing utility in a follow-up change. We might
also consider using this same hash in type stream merging, so that we
don't have to hash our records twice.
Reviewers: inglorion, ruiu
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D35515
llvm-svn: 308240
Code to convert MachO - specific section debug section names to standard DWARF v5
section names was in the wrong place.
Differential Revision: https://reviews.llvm.org/D35321
llvm-svn: 307872
Avoid duplicating DictScope with hand-written names everywhere. Print
the S_-prefixed symbol kind for every record. This should make it easier
to search for certain kinds of records when debugging PDB linking.
llvm-svn: 307732
Summary: White spaces in file names are causing Phabricator/SVN to crash.
Reviewers: bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35206
llvm-svn: 307550
Based strictly on the name, this seems to have something to do
width edit & continue. The goal of this patch has nothing to do
with supporting edit and continue though. msvc link.exe writes
very basic information into this area even when *not* compiling
with support for E&C, and so the goal here is to bring lld-link
to parity. Since we cannot know what assumptions standard tools
make about the content of PDB files, we need to be as close as
possible.
This ECNames data structure is a standard PDB string hash table.
link.exe puts a single string into this hash table, which is the
full path to the PDB file on disk. It then references this string
from the module descriptor for the compiler generated `* Linker *`
module.
With this patch, lld-link will generate the exact same sequence of
bytes as MSVC link for this subsection for a given object file
input (as reported by `llvm-pdbutil bytes -ec`).
llvm-svn: 307356
We had a lot of one-off tests for this type and that type,
or "every type that happens to be generated by this program
I built". Eventually I got a bug report filed where we were
crashing on a type that was not covered by any of these tests.
So this test carefully constructs a minimal C++ program that
will cause every type we support to be emitted. This ensures
full coverage for type records.
Differential Revision: https://reviews.llvm.org/D34915
llvm-svn: 307187
Type records have a unique type index, but symbol records do
not. Instead, symbol records refer to other symbol records
by referencing their offset in the symbol stream. In a sense
this is the analogue of the TypeIndex, but we are not printing
it in the dumper. Printing it not only gives us more useful
information when manually investigating the contents of a PDB,
but also allows us to write better tests by enabling us to
verify that fields that reference other symbol records do
so correctly.
Differential Revision: https://reviews.llvm.org/D34906
llvm-svn: 306890
If the instructions at the beginning of the block have no location,
we're better off using the location of the first instruction in the
current basic block. At the very least, that instruction post-dominates
this one, whereas if we don't emit a .cv_loc directive, we end up using
the potentially invalid location that falls through from the previous
block.
We could probably do better here by emitting some kind of ".cv_loc end"
directive that stops the line table entry of the previous .cv_loc
directive from bleeding out of its basic block. This would improve the
line table when an entire MBB has no valid location info.
llvm-svn: 306889
This reverts commit da6318a92fba793e4f2447ec478b001392d57d43.
This is causing failures on some build bots due to what appears
to be some kind of lit ordering dependency.
llvm-svn: 306833
Presently lit leaks files in the tests' output directories.
Specifically, if a test creates output files, lit makes no
effort to remove them prior to the next test run. This is
problematic because it leads to false positives whenever a
test passes because stale files were present. In general
it is a source of flakiness that should be removed.
This patch addresses this by building the list of all test
directories that are part of the current run set, and then
deleting those directories and recreating them anew. This
gives each test a clean baseline to start from.
Differential Revision: https://reviews.llvm.org/D34732
llvm-svn: 306832
This patch verifies the number of atoms, the validity of the form for each atom, as well as the validity of the
hashdata. For hashdata, we're verifying that the hashdata offset is correct and that the offset in the .debug_info for
each DIE in the hashdata is also valid.
llvm-svn: 306735
This is useful when you want to look at a specific chunk of a
stream or look for discontinuities, and you need to know the
list of blocks occupied by a stream.
llvm-svn: 306150
This patch dumps the raw bytes of the pdb name map which contains
the mapping of stream name to stream index for the string table
and other reserved streams.
llvm-svn: 306148
Normally we can only make sense of the content of a PDB in terms
of streams and blocks, but in some cases it may be useful to dump
bytes at a specific absolute file offset. For example, if you
know that some interesting data is at a particular location and
you want to see some surrounding data.
llvm-svn: 306146
The goal here is to make it possible to display absolute
file offsets when dumping byets from an MSF. The problem is
that when dumping bytes from an MSF, often the bytes will
cross a block boundary and encounter a discontinuity. We
can't use the normal formatBinary() function for this because
this would just treat the sequence as entirely ascending, and
not account out-of-order blocks.
This patch adds a formatMsfData() function to our printer, and
then uses this function to improve the output of the -stream-data
command line option for dumping bytes from a particular stream.
Test coverage is also expanded to make sure to include all possible
scenarios of offsets, sizes, and crossing block boundaries.
llvm-svn: 306141
This idea originally came about when I was doing some deep
investigation of why certain bytes in a PDB that we round-tripped
differed from their original bytes in the source PDB. I found
myself having to hack up the code in many places to dump the
bytes of this substream, or that record. It would be nice if
we could just do this for every possible stream, substream,
debug chunk type, etc.
It doesn't make sense to put this under dump because there's just
so many options that would detract from the more common use case
of just dumping deserialized records. So making a new subcommand
seems like the most logical course of action. In doing so, we
already have two command line options that are suitable for this
new subcommand, so start out by moving them there.
llvm-svn: 306056
Now you run llvm-pdbutil dump <options>. This is a followup
after having renamed the tool, whereas before raw was obviously
just the style of dumping, whereas now "dump" is the action to
perform with the "util".
llvm-svn: 306055
Summary:
This fixes a bug where we always treat APSInts in Codeview as
signed when writing them to YAML. One symptom of this problem is that
llvm-pdbdump raw would show Enumerator Values that differ between the
original PDB and a PDB that has been round-tripped through YAML.
Reviewers: zturner
Reviewed By: zturner
Subscribers: llvm-commits, fhahn
Differential Revision: https://reviews.llvm.org/D34013
llvm-svn: 305965
We forgot to serialize these because llvm-readobj didn't dump them. They
are typically all zeros in an object file. The linker fills them in with
relocations before adding them to the PDB. Now we can properly round
trip these symbols through pdb2yaml -> yaml2pdb.
I made these fields optional with a zero default so that we can elide
them from our test cases.
llvm-svn: 305857
This reverts commit r305852.
The testcase already exists but I moved it to the X86 directory on a
using a different machine and got confused...
llvm-svn: 305856
The instruction it falls over on is an IMPLICT_DEF that also happens
to be the only instruction in its lexical scope. That LexicalScope has
never been created because its range is empty. This patch skips over
all meta-instructions instead of just DBG_VALUEs.
Thanks to David Blaikie for providing a testcase!
llvm-svn: 305853
For the following motivating example
bool c();
void f();
bool start() {
bool result = c();
if (!c()) {
result = false;
goto exit;
}
f();
result = true;
exit:
return result;
}
we would previously generate a single DW_AT_const_value(1) because
only the DBG_VALUE in the second-to-last basic block survived
codegen. This patch improves the heuristic used to determine when a
DBG_VALUE is available at the beginning of its variable's enclosing
lexical scope:
- Stop giving singular constants blanket permission to take over the
entire scope. There is still a special case for constants in the
function prologue that we also miight want to retire later.
- Use the lexical scope information to determine available-at-entry
instead of proximity to the function prologue.
After this patch we generate a location list with a more accurate
narrower availability for the constant true value. As a pleasant side
effect, we also generate inline locations instead of location lists
where a loacation covers the entire range of the enclosing lexical
scope.
Measured on compiling llc with four targets this doesn't have an
effect on compile time and reduces the size of the debug info for llc
by ~600K.
rdar://problem/30286912
llvm-svn: 305599
This resubmits commit c0c249e9f2ef83e1d1e5f166b50673d92f3579d7.
It was broken due to some weird template issues, which have
since been fixed.
llvm-svn: 305517
This reverts commit 83ea17ebf2106859a51fbc2a86031b44d33696ad.
This is failing due to some strange template problems, so reverting
until it can be straightened out.
llvm-svn: 305505
After some internal discussions, we agreed that the raw output style had
outlived its usefulness. It was originally created before we had even
thought of dumping to YAML, and it was intended to give us some insight
into the internals of a PDB file. Now we have YAML mode which does
almost exactly this but is more powerful in that it can round-trip back
to a PDB, which the raw mode could not do. So the raw mode had become
purely a maintenance burden.
One option was to just delete it. However, its original goal was to be
as readable as possible while staying close to the "metal" - i.e.
presenting the output in a way that maps directly to the underlying file
format. We don't actually need that last requirement anymore since it's
covered by the yaml mode, so we could repurpose "raw" mode to actually
just be as readable as possible.
This patch implements about 80% of the functionality previously in raw
mode, but in a completely different style that is more akin to what
cvdump outputs. Records are very compressed, often times appearing on
just one line. One nice thing about this is that it makes full record
matching easier, because you can grep for indices, names, and leaf types
on a single line often.
See the tests for some examples of what the new output looks like.
Note that this patch actually regresses the functionality of raw mode in
a few areas, but only because the patch was already unreasonably large
and going 100% would have been even worse. Specifically, this patch is
missing:
The ability to dump module debug subsections (checksums, lines, etc)
The ability to dump section headers
Aside from that everything is here. While goign through the tests fixing
them all up, I found many duplicate tests. They've been deleted. In
subsequent patches I will go through and re-add the missing
functionality.
Differential Revision: https://reviews.llvm.org/D34191
llvm-svn: 305495
Summary:
This patch is part of 3 patches that together form a single patch, but must be introduced in stages in order not to break things.
The way that LLVM interprets DW_OP_plus in DIExpression nodes is basically that of the DW_OP_plus_uconst operator since LLVM expects an unsigned constant operand. This unnecessarily restricts the DW_OP_plus operator, preventing it from being used to describe the evaluation of runtime values on the expression stack. These patches try to align the semantics of DW_OP_plus and DW_OP_minus with that of the DWARF definition, which pops two elements off the expression stack, performs the operation and pushes the result back on the stack.
This is done in three stages:
• The first patch (LLVM) adds support for DW_OP_plus_uconst.
• The second patch (Clang) contains changes all its uses from DW_OP_plus to DW_OP_plus_uconst.
• The third patch (LLVM) changes the semantics of DW_OP_plus and DW_OP_minus to be in line with its DWARF meaning. This patch includes the bitcode upgrade from legacy DIExpressions.
Patch by Sander de Smalen.
Reviewers: echristo, pcc, aprantl
Reviewed By: aprantl
Subscribers: fhahn, javed.absar, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D33894
llvm-svn: 305386
When we get an unknown symbol type, we might as well at least
dump it. Same goes for round-tripping through YAML, we can
dump the record contents as raw bytes even if we don't know
how to interpret it semantically.
llvm-svn: 305248
This fixes PR33157.
https://bugs.llvm.org//show_bug.cgi?id=33157
We might also think about disallowing duplicate dbg.declare intrinsics
entirely, but this may complicate some passes needlessly.
llvm-svn: 305244
This is to reflect the evolving nature of the tool as being
useful for more than just dumping PDBs, as it can do many other
things.
Differential Revision: https://reviews.llvm.org/D34062
llvm-svn: 305106
Summary:
RelocOffset is a 32-bit value, but we previously truncated it to 16 bits.
Fixes PR33335.
Reviewers: zturner, hiraditya!
Reviewed By: zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33968
llvm-svn: 305043
This adds support for Symbols, StringTable, and FrameData subsection
types. Even though these subsections rarely if ever appear in a PDB
file (they are usually in object files), there's no theoretical reason
why they *couldn't* appear in a PDB. The real issue though is that in
order to add support for dumping and writing them (which will be useful
for object files), we need a way to test them. And since there is no
support for reading and writing them to / from object files yet, making
PDB support them is the best way to both add support for the underlying
format and add support for tests at the same time. Later, when we go
to add support for reading / writing them from object files, we'll need
only minimal changes in the underlying read/write code.
llvm-svn: 305037
This is the same change for the YAML Output style applied to the
raw output style. Previously we would queue up all subsections
until every one had been read, and then output them in a pre-
determined order. This was because some subsections need to be
read first in order to properly dump later subsections. This
patch allows them to be dumped in the order they appear.
Differential Revision: https://reviews.llvm.org/D34015
llvm-svn: 305034