It is possible to have a fallthrough MBB prior to MBB placement. The original
addition of the BB would result in reordering the BB as not preceding the
successor. Because of the fallthrough nature of the BB, we could end up
executing incorrect code or even a constant pool island! Insert the spliced BB
into the same location to avoid that.
Thanks to Tim Northover for invaluable hints and Fiora for the discussion on
what may have been occurring!
llvm-svn: 264454
We did not have an explicit branch to the continuation BB. When the check was
hoisted, this could permit control follow to fall through into the division
trap. Add the explicit branch to the continuation basic block to ensure that
code execution is correct.
llvm-svn: 264370
The two changes together weakened the test and caused a regression with division
handling in MSVC mode. They were applied to avoid an assertion being triggered
in the block frequency analysis. However, the underlying problem was simply
being masked rather than solved properly. Address the actual underlying problem
and revert the changes. Rather than analyze the cause of the assertion, the
division failure was assumed to be an overflow.
The underlying issue was a subtle bug in the BB construction in the emission of
the div-by-zero check (WIN__DBZCHK). We did not construct the proper successor
information in the basic blocks, nor did we update the PHIs associated with the
basic block when we split them. This would result in assertions being triggered
in the block frequency analysis pass.
Although the original tests are being removed, the tests themselves performed
very little in terms of validation but merely tested that we did not assert when
generating code. Update this with new tests that actually ensure that we do not
regress on the code generation.
llvm-svn: 263714
Building on r253865 the crash is not limited to signed overflows.
Disable custom handling of unsigned 32-bit and 64-bit integer divide.
Add test cases for both 32-bit and 64-bit unsigned integer overflow.
llvm-svn: 254158
Disable custom handling of signed 32-bit and 64-bit integer divide.
Add test cases for both 32-bit and 64-bit integer overflow crashes.
llvm-svn: 253865
We now emit the compiler generated divide by zero check that was needed for the
MSVC routines. We construct a psuedo-instruction for the DBZ check as the
operation requires splitting up the BB. For the 64-bit operations, we need to
custom expand the node as we need to insert the DBZ check and then emit the
libcall to the appropriate name. Because this is target specific, it seemed
better to reproduce the expansion operation from the target-agnostic type
legalization rather than sink this there to avoid the duplication. The division
library calls now match MSVC semantically.
llvm-svn: 248561