This will currently accept the old number of bytes syntax, and convert
it to a scalar. This should be removed in the near future (I think I
converted all of the tests already, but likely missed a few).
Not sure what the exact syntax and policy should be. We can continue
printing the number of bytes for non-generic instructions to avoid
test churn and only allow non-scalar types for generic instructions.
This will currently print the LLT in parentheses, but accept parsing
the existing integers and implicitly converting to scalar. The
parentheses are a bit ugly, but the parser logic seems unable to deal
without either parentheses or some keyword to indicate the start of a
type.
Darwin platforms for both AArch64 and X86 can provide optimized `bzero()`
routines. In this case, it may be preferable to use `bzero` in place of a
memset of 0.
This adds a G_BZERO generic opcode, similar to G_MEMSET et al. This opcode can
be generated by platforms which may want to use bzero.
To emit the G_BZERO, this adds a pre-legalize combine for AArch64. The
conditions for this are largely a port of the bzero case in
`AArch64SelectionDAGInfo::EmitTargetCodeForMemset`.
The only difference in comparison to the SelectionDAG code is that, when
compiling for minsize, this will fire for all memsets of 0. The original code
notes that it's not beneficial to do this for small memsets; however, using
bzero here will save a mov from wzr. For minsize, I think that it's preferable
to prioritise omitting the mov.
This also fixes a bug in the libcall legalization code which would delete
instructions which could not be legalized. It also adds a check to make sure
that we actually get a libcall name.
Code size improvements (Darwin):
- CTMark -Os: -0.0% geomean (-0.1% on pairlocalalign)
- CTMark -Oz: -0.2% geomean (-0.5% on bullet)
Differential Revision: https://reviews.llvm.org/D99358