that they are not destination type specific. This allows
tblgen to factor them and the type check is redundant with
what the isel does anyway.
llvm-svn: 97629
CopyToReg/CopyFromReg/INLINEASM. These are annoying because
they have the same opcode before an after isel. Fix this by
setting their NodeID to -1 to indicate that they are selected,
just like what automatically happens when selecting things that
end up being machine nodes.
With that done, give IsLegalToFold a new flag that causes it to
ignore chains. This lets the HandleMergeInputChains routine be
the one place that validates chains after a match is successful,
enabling the new hotness in chain processing. This smarter
chain processing eliminates the need for "PreprocessRMW" in the
X86 and MSP430 backends and enables MSP to start matching it's
multiple mem operand instructions more aggressively.
I currently #if out the dead code in the X86 backend and MSP
backend, I'll remove it for real in a follow-on patch.
The testcase changes are:
test/CodeGen/X86/sse3.ll: we generate better code
test/CodeGen/X86/store_op_load_fold2.ll: PreprocessRMW was
miscompiling this before, we now generate correct code
Convert it to filecheck while I'm at it.
test/CodeGen/MSP430/Inst16mm.ll: Add a testcase for mem/mem
folding to make anton happy. :)
llvm-svn: 97596
DoInstructionSelection. Inline "SelectRoot" into it from DAGISelHeader.
Sink some other stuff out of DAGISelHeader into SDISel.
Eliminate the various 'Indent' stuff from various targets, which dates
to when isel was recursive.
17 files changed, 114 insertions(+), 430 deletions(-)
llvm-svn: 97555
it to follow the mode needed by the new isel. Instead of returning
the input and output chains, it just returns the (currently only one,
which is a silly limitation) node that has input and output chains.
Since we want the old thing to still work, add a new
SelectScalarSSELoad to emulate the old interface. The XXX suffix
and the wrapper will eventually go away.
llvm-svn: 96715
into a roundss intrinsic, producing a cyclic dag. The root cause
of this is badness handling ComplexPattern nodes in the old dagisel
that I noticed through inspection. Eliminate a copy of the of the
code that handled ComplexPatterns by making EmitChildMatchCode call
into EmitMatchCode.
llvm-svn: 96408
IsLegalToFold and IsProfitableToFold. The generic version of the later simply checks whether the folding candidate has a single use.
This allows the target isel routines more flexibility in deciding whether folding makes sense. The specific case we are interested in is folding constant pool loads with multiple uses.
llvm-svn: 96255
into TargetOpcodes.h. #include the new TargetOpcodes.h
into MachineInstr. Add new inline accessors (like isPHI())
to MachineInstr, and start using them throughout the
codebase.
llvm-svn: 95687
This new version is much more aggressive about doing "full" reduction in
cases where it reduces register pressure, and also more aggressive about
rewriting induction variables to count down (or up) to zero when doing so
reduces register pressure.
It currently uses fairly simplistic algorithms for finding reuse
opportunities, but it introduces a new framework allows it to combine
multiple strategies at once to form hybrid solutions, instead of doing
all full-reduction or all base+index.
llvm-svn: 94061
new AsmPrinter. This is perhaps less elegant than describing them
in terms of MOV32r0 and subreg operations, but it allows the
current register to rematerialize them.
llvm-svn: 93158
clear what information these functions are actually using.
This is also a micro-optimization, as passing a SDNode * around is
simpler than passing a { SDNode *, int } by value or reference.
llvm-svn: 92564
- Force NDEBUG on in any Release build. This drops the compile time to ~100s
from ~600s, in Release mode.
- This may just be a temporary workaround, I don't know the true nature of the
gcc-4.2 compile time performance problem.
llvm-svn: 86695
the testcase into:
_test1: ## @test1
## BB#0: ## %entry
leaq L_test1_bb6(%rip), %rax
jmpq *%rax
L_test1_bb: ## Address Taken
LBB1_1: ## %bb
movb $1, %al
ret
L_test1_bb6: ## Address Taken
LBB1_2: ## %bb6
movb $2, %al
ret
Note, it is very very strange that BlockAddressSDNode doesn't carry
around TargetFlags. Dan, please fix this.
llvm-svn: 85703
when one of the bits being tested would end up being the sign bit in the
narrower type, and a signed comparison is being performed, since this would
change the result of the signed comparison. This fixes PR5132.
llvm-svn: 83670
- Allocate MachineMemOperands and MachineMemOperand lists in MachineFunctions.
This eliminates MachineInstr's std::list member and allows the data to be
created by isel and live for the remainder of codegen, avoiding a lot of
copying and unnecessary translation. This also shrinks MemSDNode.
- Delete MemOperandSDNode. Introduce MachineSDNode which has dedicated
fields for MachineMemOperands.
- Change MemSDNode to have a MachineMemOperand member instead of its own
fields with the same information. This introduces some redundancy, but
it's more consistent with what MachineInstr will eventually want.
- Ignore alignment when searching for redundant loads for CSE, but remember
the greatest alignment.
Target-specific code which previously used MemOperandSDNodes with generic
SDNodes now use MemIntrinsicSDNodes, with opcodes in a designated range
so that the SelectionDAG framework knows that MachineMemOperand information
is available.
llvm-svn: 82794
naming scheme used in SelectionDAG, where there are multiple kinds
of "target" nodes, but "machine" nodes are nodes which represent
a MachineInstr.
llvm-svn: 82790
trying to create RMW opportunities in the x86 backend. This can cause a
cycle to appear in the graph, since the other uses may eventually feed into
the TokenFactor we are sinking the load below.
llvm-svn: 81996
has multiple uses, as one of the other uses may be on a path
to a different node above the callseq_start, because that
leads to a cyclic graph. This problem is exposed when
-combiner-global-alias-analysis is used. This fixes PR4880.
llvm-svn: 81821