Now that write data continously into the memory mapping, we don't need
to keep the VMO handle around after it has been mapped. This change also
ensures that the VMO is always closed on error.
Differential Revision: https://reviews.llvm.org/D76963
This avoids the test failure that was introduced in rG32bddad where
this function pulls in the rest of InstrProfilingFile.c which is
undesirable in use cases when profile runtime is being used without
the rest of libc.
This also allows additional cleanup by eliminating another variable
from platforms that don't need it.
Differential Revision: https://reviews.llvm.org/D76750
On Fuchsia, we always use the continuous mode with runtime counter
relocation, so there's no need for atexit hook or support for dumping
the profile manually.
Differential Revision: https://reviews.llvm.org/D76556
While the VMO size is always page aligned, we can record the content
size as a property and then use this metadata when writing the profile
to a file.
Differential Revision: https://reviews.llvm.org/D76402
This is an alternative to the continous mode that was implemented in
D68351. This mode relies on padding and the ability to mmap a file over
the existing mapping which is generally only available on POSIX systems
and isn't suitable for other platforms.
This change instead introduces the ability to relocate counters at
runtime using a level of indirection. On every counter access, we add a
bias to the counter address. This bias is stored in a symbol that's
provided by the profile runtime and is initially set to zero, meaning no
relocation. The runtime can mmap the profile into memory at abitrary
location, and set bias to the offset between the original and the new
counter location, at which point every subsequent counter access will be
to the new location, which allows updating profile directly akin to the
continous mode.
The advantage of this implementation is that doesn't require any special
OS support. The disadvantage is the extra overhead due to additional
instructions required for each counter access (overhead both in terms of
binary size and performance) plus duplication of counters (i.e. one copy
in the binary itself and another copy that's mmapped).
Differential Revision: https://reviews.llvm.org/D69740
When writing out a profile, avoid allocating a page on the stack for the
purpose of writing out zeroes, as some embedded environments do not have
enough stack space to accomodate this.
Instead, use a small, fixed-size zero buffer that can be written
repeatedly.
For a synthetic file with >100,000 functions, I did not measure a
significant difference in profile write times. We are removing a
page-length zero-fill `memset()` in favor of several smaller buffered
`fwrite()` calls: in practice, I am not sure there is much of a
difference. The performance impact is only expected to affect the
continuous sync mode (%c) -- zero padding is less than 8 bytes in all
other cases.
rdar://57810014
Differential Revision: https://reviews.llvm.org/D71323
We want to avoid doing expensive work during atexit since the process
might be terminated before we can publish the VMO and write out the
symbolizer markup, so move the VMO creation to the initialization
phase and only write data during the atexit phase.
Differential Revision: https://reviews.llvm.org/D66323
llvm-svn: 369180
Currently VMO in Zircon create using the zx_vmo_create is resizable
by default, but we'll be changing this in the future, requiring an
explicit flag to make the VMO resizable.
Prepare for this change by passing ZX_VMO_RESIZABLE option to all
zx_vmo_create calls that need resizable VMO.
Differential Revision: https://reviews.llvm.org/D61450
llvm-svn: 359803
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This ports the profiling runtime on Fuchsia and enables the
instrumentation. Unlike on other platforms, Fuchsia doesn't use
files to dump the instrumentation data since on Fuchsia, filesystem
may not be accessible to the instrumented process. We instead use
the data sink to pass the profiling data to the system the same
sanitizer runtimes do.
Differential Revision: https://reviews.llvm.org/D47208
llvm-svn: 337881