Input/Output rewrite to the same location. Make sure the SizeDirective rewrite
is performed first. This also ensure the sort algorithm is stable.
llvm-svn: 175317
This is complicated by backward labels (e.g., 0b can be both a backward label
and a binary zero). The current implementation assumes [0-9]b is always a
label and thus it's possible for 0b and 1b to not be interpreted correctly for
ms-style inline assembly. However, this is relatively simple to fix in the
inline assembly (i.e., drop the [bB]).
This patch also limits backward labels to [0-9]b, so that only 0b and 1b are
ambiguous.
Part of rdar://12470373
llvm-svn: 174983
the body does not use them and it appears the body has positional parameters.
This can cause unexpected results as in the added test case. As the darwin
version of gas(1) which only supported positional parameters, happened to
ignore the named parameters. Now that we want to support both styles of
macros we issue a warning in this specific case.
rdar://12861644
llvm-svn: 173199
// FIXME: Constraints are hard coded to 'm', but we need an 'r'
// constraint for addressof. This needs to be cleaned up!
Test cases are already in place. Specifically,
clang/test/CodeGen/ms-inline-asm.c t15(), t16(), and t24().
llvm-svn: 172569
After discussing the refactoring with Jim and Daniel, the following changes were
made:
* All generic directive parsing is now done by AsmParser itself. The previous
division between it and GenericAsmParser did not have clear boundaries and
just produced unnatural code of GenericAsmParser juggling the internals of
AsmParser through an interface.
The division of responsibilities is now clear: target-specific directives,
other extensions (used by platform-specific parseres), and generic directives.
* Priority for directive parsing was reshuffled to ask extensions first and
check the generic directives later.
No change in functionality.
llvm-svn: 172568
simply use the getParser method from MCAsmParserExtension, working through the
MCAsmParser interface. There's no longer a need to overload that method to
cast it to the concrete AsmParser.
llvm-svn: 172491
This finally allows AsmParser to no longer list GenericAsmParser as a friend.
All member vars directly accessed by GenericAsmParser have been properly
encapsulated and exposed through the MCAsmParser interface. This reduces the
coupling between AsmParser and GenericAsmParser.
llvm-svn: 172490
Now that it behaves itself in terms of streamer independence (r172450), this
method can be moved to MCAsmParser to be available to all extensions,
overriding, etc.
-- -This line, and those below, will be ignored--
M lib/MC/MCParser/AsmParser.cpp
M include/llvm/MC/MCParser/MCAsmParser.h
llvm-svn: 172451
The aim of this patch is to fix the following piece of code in the
platform-independent AsmParser:
void AsmParser::CheckForValidSection() {
if (!ParsingInlineAsm && !getStreamer().getCurrentSection()) {
TokError("expected section directive before assembly directive");
Out.SwitchSection(Ctx.getMachOSection(
"__TEXT", "__text",
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
0, SectionKind::getText()));
}
}
This was added for the "-n" option of llvm-mc.
The proposed fix adds another virtual method to MCStreamer, called
InitToTextSection. Conceptually, it's similar to the existing
InitSections which initializes all common sections and switches to
text. The new method is implemented by each platform streamer in a way
that it sees fit. So AsmParser can now do this:
void AsmParser::CheckForValidSection() {
if (!ParsingInlineAsm && !getStreamer().getCurrentSection()) {
TokError("expected section directive before assembly directive");
Out.InitToTextSection();
}
}
Which is much more reasonable.
llvm-svn: 172450
Since it's used by extensions. One further step to fully decoupling
GenericAsmParser from an intimate knowledge of the internals of AsmParser,
pointing it to the MCASmParser interface instead (like all other parser
extensions do).
Since this change moves the MacroArgument type to the interface header, it's
renamed to be a bit more descriptive in a general context.
llvm-svn: 172449
The methods are also exposed via the MCAsmParser interface, which allows more
than one client to control them. Previously, GenericAsmParser was playing with
a member var in AsmParser directly (by virtue of being its friend).
llvm-svn: 172440
The MCAsmParser interface defines ParseIdentifier is public. There's no reason
whatsoever for AsmParser (which implements the MCAsmParser interface) to hide
this method.
This is all part of a bigger scheme. Several asm parsing "extensions" use the
main parser properly through the MCAsmParser interface. However,
GenericAsmParser has much more exclusive access and uses implementation details
from the concrete implementation - AsmParser, in which it is also declared as
a friend. This makes for overly coupled code, and even makes it hard to split
GenericAsmParser into a separate file. There's no reason why GenericAsmParser
shouldn't be able to access AsmParser through an abstract interface, as long
as it's actually registered as an extension.
llvm-svn: 172276
GenericAsmParser extension, where a lot of directives are already being parsed.
The end goal is having just a single place (and a single lookup table) for
all directive parsing.
llvm-svn: 172268
This is necessary not only for representing empty ranges, but for handling
multibyte characters in the input. (If the end pointer in a range refers to
a multibyte character, should it point to the beginning or the end of the
character in a char array?) Some of the code in the asm parsers was already
assuming this anyway.
llvm-svn: 171765
should only occur on invalid input. Instruction matching errors aren't
unexpected, so we can't rely on the AsmParsers HadError variable directly.
rdar://12840278
llvm-svn: 170037
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131