Error
Host::RunShellCommand (const char *command,
const char *working_dir,
int *status_ptr,
int *signo_ptr,
std::string *command_output_ptr,
uint32_t timeout_sec);
This will allow us to use this functionality in the host lldb_private::Platform, and also use it in our lldb-platform binary. It leverages the existing code in Host::LaunchProcess and ProcessLaunchInfo.
llvm-svn: 154730
Hello everyone,
please find the attached patch for TOT and lldb-platform-work branch, which provides the following changes:
- fixed a crash in the ProcessPOSIX constructor when an executable module object is not yet created.
- added support for the multi instanciated FreeBSD platform objects (the local host and remote as example).
- enabled the remote gdb plugin on FreeBSD.
llvm-svn: 154724
Enable logging the packet history when registers fail to read due to not getting the sequence mutex if "--verbose" is enabled on the log channel for the "gdb-remote" log category.
This will help us track down some issues.
llvm-svn: 154704
The less locks there are, the better. I removed the thread ID mutex and now just shared the m_thread_list's mutex to make sure we don't deadlock due to lock inversion.
llvm-svn: 154652
the debug information individual Decls came from.
We've had a metadata infrastructure for a while,
which was intended to solve a problem we've since
dealt with in a different way. (It was meant to
keep track of which definition of an Objective-C
class was the "true" definition, but we now find
it by searching the symbols for the class symbol.)
The metadata is attached to the ExternalASTSource,
which means it has a one-to-one correspondence with
AST contexts.
I've repurposed the metadata infrastructure to
hold the object file and DIE offset for the DWARF
information corresponding to a Decl. There are
methods in ClangASTContext that get and set this
metadata, and the ClangASTImporter is capable of
tracking down the metadata for Decls that have been
copied out of the debug information into the
parser's AST context without using any additional
memory.
To see the metadata, you just have to enable the
expression log:
-
(lldb) log enable lldb expr
-
and watch the import messages. The high 32 bits
of the metadata indicate the index of the object
file in its containing DWARFDebugMap; I have also
added a log which you can use to track that mapping:
-
(lldb) log enable dwarf map
-
This adds 64 bits per Decl, which in my testing
hasn't turned out to be very much (debugging Clang
produces around 6500 Decls in my tests). To track
how much data is being consumed, I've also added a
global variable g_TotalSizeOfMetadata which tracks
the total number of Decls that have metadata in all
active AST contexts.
Right now this metadata is enormously useful for
tracking down bugs in the debug info parser. In the
future I also want to use this information to provide
more intelligent error messages instead of printing
empty source lines wherever Clang refers to the
location where something is defined.
llvm-svn: 154634
FunctionDecls into classes if it looked up a
method in a different DWARF context than the
one where it found the parent class's definition.
The symptom of this was, for a method A::B(),
1) LLDB finds A in context 1, creating a
CXXRecordDecl for A and marking it as needing
completion
2) LLDB looks up B in context 2, finds that its
parent A already has a CXXRecordDecl, but can't
find a CXXMethodDecl for B
3) Not finding a CXXMethodDecl for B, LLDB doesn't
set the flag indicating that B was resolved
4) Because the flag wasn't set, LLDB's fallthrough
code creates a FunctionDecl for B and sticks it
in the DeclContext -- in this case, A.
5) Clang crashes on finding a FunctionDecl inside a
CXXRecordDecl.
llvm-svn: 154627
for packet confirmation.
Also added a bit more logging.
Also, unlock the writer end of the run lock in Process.cpp on our way out of the private state
thread so that the Process can shut down cleanly.
<rdar://problem/11228538>
llvm-svn: 154601
Cleaned up the Mutex::Locker and the ReadWriteLock classes a bit.
Also cleaned up the GDBRemoteCommunication class to not have so many packet functions. Used the "NoLock" versions of send/receive packet functions when possible for a bit of performance.
llvm-svn: 154458
QListThreadsInStopReply
This GDB remote query command can enable added a "threads" key/value pair to all stop reply packets so that we always get a list of all threads in each stop reply packet. It increases performance if enabled (the reply to the "QListThreadsInStopReply" is "OK") by saving us from sending to command/reply pairs (the "qfThreadInfo" and "qsThreadInfo" packets), and also helps us keep the current process state up to date.
llvm-svn: 154380
The next step is to have our stop reply packets send the thread list in the actual stop reply packet to avoid a 2 packet overhead of sending the qfThreadInfo + response and qfThreadInfo + response.
llvm-svn: 154376
1) Start the PrivateStateThread stopped, and then in
StartPrivateStateThread, make the private state thread and then
resume it before we say the thread is created. That way we know it is
listening for events by the time we get out of
StartPrivateStateThread.
2) Backstop running a thread plan when calling Process::RunThreadPlan
on the private state thread with a ThreadPlanBase so that running the
plan doesn't pass its stop events to whatever plans happen to be above
us on the thread plan stack.
llvm-svn: 154368
The current ProcessGDBRemote function that updates the threads could end up with an empty list if any other thread had the sequence mutex. We now don't clear the thread list when we can't access it, and we also have changed how lldb_private::Process handles the return code from the:
virtual bool
Process::UpdateThreadList (lldb_private::ThreadList &old_thread_list,
lldb_private::ThreadList &new_thread_list) = 0;
A bool is now returned to indicate if the list was actually updated or not and the lldb_private::Process class will only update the stop ID of the validity of the thread list if "true" is returned.
The ProcessGDBRemote also got an extra assertion that will hopefully assert when running debug builds so we can find the source of this issue.
llvm-svn: 154365
Work around a deadlocking issue where "SBDebugger::MemoryPressureDetected ()" is being called and is causing a deadlock. We now just try and get the lock when trying to trim down the unique modules so we don't deadlock debugger GUI programs until we can find the root cause.
llvm-svn: 154339
nanoseconds in 32-bit expression would cause pthread_cond_timedwait
to time out immediately. Add explicit casts to the TimeValue::TimeValue
ctor that takes a struct timeval and change the NanoSecsPerSec etc
constants defined in TimeValue to be uint64_t so any other calculations
involving these should be promoted to 64-bit even when lldb is built
for 32-bit.
<rdar://problem/11204073>, <rdar://problem/11179821>, <rdar://problem/11194705>.
llvm-svn: 154250
spin up a temporary "private state thread" that will respond to events from the lower level process plugins. This check-in should work to do
that, but it is still buggy. However, if you don't call functions on the private state thread, these changes make no difference.
This patch also moves the code in the AppleObjCRuntime step-through-trampoline handler that might call functions (in the case where the debug
server doesn't support the memory allocate/deallocate packet) out to a safe place to do that call.
llvm-svn: 154230
Also test for the process to be stopped when many SBValue API calls are made to make sure it is safe to evaluate values, children of values and much more.
llvm-svn: 154160