Small optimization in 'simplifyAddress'. When the offset cannot be encoded in
the load/store instruction, then we need to materialize the address manually.
The add instruction can encode a wider range of immediates than the load/store
instructions. This change tries to fold the offset into the add instruction
first before materializing the offset in a register.
llvm-svn: 218031
The 'AND' instruction could be used to mask out the lower 32 bits of a register.
If this is done inside an address computation we might be able to fold the
instruction into the memory instruction itself.
and x1, x1, #0xffffffff ---> ldrb x0, [x0, w1, uxtw]
ldrb x0, [x0, x1]
llvm-svn: 218030
This uses the target-dependent selection code for shifts first, which allows us
to create better code for shifts with immediates and sign-/zero-extend folding.
Vector type are not handled yet and the code falls back to target-independent
instruction selection for these cases.
This fixes rdar://problem/17907920.
llvm-svn: 216985
Currently instructions are folded very aggressively for AArch64 into the memory
operation, which can lead to the use of killed operands:
%vreg1<def> = ADDXri %vreg0<kill>, 2
%vreg2<def> = LDRBBui %vreg0, 2
... = ... %vreg1 ...
This usually happens when the result is also used by another non-memory
instruction in the same basic block, or any instruction in another basic block.
This fix teaches hasTrivialKill to not only check the LLVM IR that the value has
a single use, but also to check if the register that represents that value has
already been used. This can happen when the instruction with the use was folded
into another instruction (in this particular case a load instruction).
This fixes rdar://problem/18142857.
llvm-svn: 216634
Currently instructions are folded very aggressively into the memory operation,
which can lead to the use of killed operands:
%vreg1<def> = ADDXri %vreg0<kill>, 2
%vreg2<def> = LDRBBui %vreg0, 2
... = ... %vreg1 ...
This usually happens when the result is also used by another non-memory
instruction in the same basic block, or any instruction in another basic block.
If the computed address is used by only memory operations in the same basic
block, then it is safe to fold them. This is because all memory operations will
fold the address computation and the original computation will never be emitted.
This fixes rdar://problem/18142857.
llvm-svn: 216629
When the address comes directly from a shift instruction then the address
computation cannot be folded into the memory instruction, because the zero
register is not available as a base register. Simplify addess needs to emit the
shift instruction and use the result as base register.
llvm-svn: 216621
Use the zero register directly when possible to avoid an unnecessary register
copy and a wasted register at -O0. This also uses integer stores to store a
positive floating-point zero. This saves us from materializing the positive zero
in a register and then storing it.
llvm-svn: 216617
When a shift with extension or an add with shift and extension cannot be folded
into the memory operation, then the address calculation has to be materialized
separately. While doing so the code forgot to consider a possible sign-/zero-
extension. This fix folds now also the sign-/zero-extension into the add or
shift instruction which is used to materialize the address.
This fixes rdar://problem/18141718.
llvm-svn: 216511
This is mostly achieved by providing the correct register class manually,
because getRegClassFor always returns the GPR*AllRegClass for MVT::i32 and
MVT::i64.
Also cleanup the code to use the FastEmitInst_* method whenever possible. This
makes sure that the operands' register class is properly constrained. For all
the remaining cases this adds the missing constrainOperandRegClass calls for
each operand.
llvm-svn: 216225
Note: This was originally reverted to track down a buildbot error. Reapply
without any modifications.
Original commit message:
FastISel didn't take much advantage of the different addressing modes available
to it on AArch64. This commit allows the ComputeAddress method to recognize more
addressing modes that allows shifts and sign-/zero-extensions to be folded into
the memory operation itself.
For Example:
lsl x1, x1, #3 --> ldr x0, [x0, x1, lsl #3]
ldr x0, [x0, x1]
sxtw x1, w1
lsl x1, x1, #3 --> ldr x0, [x0, x1, sxtw #3]
ldr x0, [x0, x1]
llvm-svn: 216013
FastISel didn't take much advantage of the different addressing modes available
to it on AArch64. This commit allows the ComputeAddress method to recognize more
addressing modes that allows shifts and sign-/zero-extensions to be folded into
the memory operation itself.
For Example:
lsl x1, x1, #3 --> ldr x0, [x0, x1, lsl #3]
ldr x0, [x0, x1]
sxtw x1, w1
lsl x1, x1, #3 --> ldr x0, [x0, x1, sxtw #3]
ldr x0, [x0, x1]
llvm-svn: 215597