The pattern we replaced these with may be too hard to match as demonstrated by
PR41496 and PR41316.
This patch restores the intrinsics and then we can start focusing
on the optimizing the intrinsics.
I've mostly reverted the original patch that removed them. Though I modified
the avx512 intrinsics to not have masking built in.
Differential Revision: https://reviews.llvm.org/D60674
llvm-svn: 358427
As noted on PR40203, for gcc compatibility we need to support non-immediate values in the 'slli/srli/srai' shift by immediate vector intrinsics.
llvm-svn: 350619
Sibling patch to D55855, this emits UADD_SAT/USUB_SAT generic intrinsics for the SSE saturated math intrinsics instead of expanding to a IR code sequence that could be difficult to reassemble.
Differential Revision: https://reviews.llvm.org/D55879
llvm-svn: 349631
These aren't documented in the Intel Intrinsics Guide, but are supported by gcc and icc.
Includes these intrinsics:
_ktestc_mask8_u8, _ktestz_mask8_u8, _ktest_mask8_u8
_ktestc_mask16_u8, _ktestz_mask16_u8, _ktest_mask16_u8
_ktestc_mask32_u8, _ktestz_mask32_u8, _ktest_mask32_u8
_ktestc_mask64_u8, _ktestz_mask64_u8, _ktest_mask64_u8
llvm-svn: 341265
This adds:
_cvtmask8_u32, _cvtmask16_u32, _cvtmask32_u32, _cvtmask64_u64
_cvtu32_mask8, _cvtu32_mask16, _cvtu32_mask32, _cvtu64_mask64
_load_mask8, _load_mask16, _load_mask32, _load_mask64
_store_mask8, _store_mask16, _store_mask32, _store_mask64
These are currently missing from the Intel Intrinsics Guide webpage.
llvm-svn: 341251
This adds the following intrinsics:
_kshiftli_mask8
_kshiftli_mask16
_kshiftli_mask32
_kshiftli_mask64
_kshiftri_mask8
_kshiftri_mask16
_kshiftri_mask32
_kshiftri_mask64
llvm-svn: 341234
This adds the following intrinsics:
_kadd_mask64
_kadd_mask32
_kadd_mask16
_kadd_mask8
These are missing from the Intel Intrinsics Guide, but are implemented by both gcc and icc.
llvm-svn: 340879
This also adds a second intrinsic name for the 16-bit mask versions.
These intrinsics match gcc and icc. They just aren't published in the Intel Intrinsics Guide so I only recently found they existed.
llvm-svn: 340719
Summary: This is the patch that lowers x86 intrinsics to native IR in order to enable optimizations.
Reviewers: craig.topper, spatel, RKSimon
Reviewed By: craig.topper
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D46892
llvm-svn: 339651
We still lower them to native shuffle IR, but we do it in CGBuiltin.cpp now. This allows us to check the target feature and ensure the immediate fits in 8 bits.
This also improves our -O0 codegen slightly because we're able to see the zeroinitializer in the shuffle. It looks like it got lost behind a store+load previously.
llvm-svn: 334208
This is more consistent with other usages of builtin_shufflevector. Later optimization passes or codegen will detect the duplicate vector and replace it with undef. Using _mm_undefined just puts a zeroinitializer that still needs to be optimized out later.
llvm-svn: 333944
We had quite a few for different element sizes of integers sometimes with strange target features attached to them.
We only need a single version for each of _m128i, _m256i, and _m512i with the target feature that first introduced those types.
llvm-svn: 333568
As long as the destination type is a 256 or 128 bit vector with the same number of elements we can use __builtin_convertvector to directly generate trunc IR instruction which will be handled natively by the backend.
Differential Revision: https://reviews.llvm.org/D46742
llvm-svn: 332266
This is the patch that lowers x86 intrinsics to native IR
in order to enable optimizations.
Patch by tkrupa
Differential Revision: https://reviews.llvm.org/D44786
llvm-svn: 330323
Summary:
kunpck intrinsics were removed in favor of native IR a few months ago. The implementation lowers them as by operation on the integer types passed to the intrinsic and then just shifting, masking, and oring them together. A special X86 DAG combine was added to recognize this patter and turn it into a concat_vector operation.
I think it makes more sense to keep the IR implementation closer to vector operations on vXi1. Given that we expect these builtins to be used around other builtins that operate on k-registers which we try to represent in IR with vXi1. InstCombine should be able to get rid of the bitcasts between integers and vXi1 leaving only the vector operations.
Reviewers: RKSimon, spatel, zvi, jina.nahias
Reviewed By: RKSimon
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D42016
llvm-svn: 322461
This patch, together with a matching llvm patch (https://reviews.llvm.org/D39720), implements the lowering of X86 kunpack intrinsics to IR.
Differential Revision: https://reviews.llvm.org/D39719
Change-Id: Id5d3cb394ad33b98be79a6783d1d15569e2b798d
llvm-svn: 319777
Change Header files of the intrinsics for lowering test and testn intrinsics to IR code.
Removed test and testn builtins from clang
Differential Revision: https://reviews.llvm.org/D38737
llvm-svn: 318035
This patch is a part two of two reviews, one for the clang and the other for LLVM.
In this patch, I covered the clang side, by introducing the intrinsic to the front end.
This is done by creating a generic replacement.
Differential Revision: https://reviews.llvm.org/D31394a
llvm-svn: 299431
x86 has undef SSE/AVX intrinsics that should represent a bogus register operand.
This is not the same as LLVM's undef value which can take on multiple bit patterns.
There are better solutions / follow-ups to this discussed here:
https://bugs.llvm.org/show_bug.cgi?id=32176
...but this should prevent miscompiles with a one-line code change.
Differential Revision: https://reviews.llvm.org/D30834
llvm-svn: 297588
This will allow the backend to constant fold these to generic shuffle vectors like 128-bit and 256-bit without having to working about handling masking.
llvm-svn: 289345
The X86 clang/test/CodeGen/*builtins.c tests define the mm_malloc.h include
guard as a hack for avoiding its inclusion (mm_malloc.h requires a hosted
environment since it expects stdlib.h to be available - which is not the case
in these internal clang codegen tests).
This patch removes this hack and instead passes -ffreestanding to clang cc1.
Differential Revision: https://reviews.llvm.org/D24825
llvm-svn: 282581