Commit Graph

223 Commits

Author SHA1 Message Date
Nicola Zaghen d34e60ca85 Rename DEBUG macro to LLVM_DEBUG.
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.

In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.

Differential Revision: https://reviews.llvm.org/D43624

llvm-svn: 332240
2018-05-14 12:53:11 +00:00
Adrian Prantl 5f8f34e459 Remove \brief commands from doxygen comments.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.

Patch produced by

  for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done

Differential Revision: https://reviews.llvm.org/D46290

llvm-svn: 331272
2018-05-01 15:54:18 +00:00
Florian Hahn 8fe04ad3f7 [LoopSimplify] Use BB::instructionsWithoutDebug to skip DbgInfo (NFC).
This patch updates some code responsible the skip debug info to use
BasicBlock::instructionsWithoutDebug. I think this makes things slightly
simpler and more direct.

Reviewers: aprantl, vsk, chandlerc

Reviewed By: aprantl

Differential Revision: https://reviews.llvm.org/D46253

llvm-svn: 331217
2018-04-30 19:19:36 +00:00
Max Kazantsev c54e67d6b9 [NFC] Remove recently added SE verification because it may be false-positive
llvm-svn: 330699
2018-04-24 09:11:01 +00:00
Max Kazantsev b1137c42fa [LoopSimplify] Fix incorrect SCEV invalidation
In the function `simplifyOneLoop` we optimistically assume that changes in the
inner loop only affect this very loop and have no impact on its parents. In fact,
after rL329047 has been merged, we can now calculate exit counts for outer
loops which may depend on inner loops. Thus, we need to invalidate all parents
when we do something to a loop.

There is an evidence of incorrect behavior of `simplifyOneLoop`: when we insert
`SE->verify()` check in the end of this funciton, it fails on a bunch of existing
test, in particular:

    LLVM :: Transforms/LoopUnroll/peel-loop-not-forced.ll
    LLVM :: Transforms/LoopUnroll/peel-loop-pgo.ll
    LLVM :: Transforms/LoopUnroll/peel-loop.ll
    LLVM :: Transforms/LoopUnroll/peel-loop2.ll

Note that previously we have fixed issues of this variety, see rL328483.
This patch makes this function invalidate the outermost loop properly.

Differential Revision: https://reviews.llvm.org/D45937
Reviewed By: chandlerc

llvm-svn: 330576
2018-04-23 10:32:37 +00:00
David Blaikie a373d18eb7 Transforms: Introduce Transforms/Utils.h rather than spreading the declarations amongst Scalar.h and IPO.h
Fixes layering - Transforms/Utils shouldn't depend on including a Scalar
or IPO header, because Scalar and IPO depend on Utils.

llvm-svn: 328717
2018-03-28 17:44:36 +00:00
David Blaikie 2be3922807 Fix a couple of layering violations in Transforms
Remove #include of Transforms/Scalar.h from Transform/Utils to fix layering.

Transforms depends on Transforms/Utils, not the other way around. So
remove the header and the "createStripGCRelocatesPass" function
declaration (& definition) that is unused and motivated this dependency.

Move Transforms/Utils/Local.h into Analysis because it's used by
Analysis/MemoryBuiltins.cpp.

llvm-svn: 328165
2018-03-21 22:34:23 +00:00
Sanjoy Das def1729dc4 Use a BumpPtrAllocator for Loop objects
Summary:
And now that we no longer have to explicitly free() the Loop instances, we can
(with more ease) use the destructor of LoopBase to do what LoopBase::clear() was
doing.

Reviewers: chandlerc

Subscribers: mehdi_amini, mcrosier, llvm-commits

Differential Revision: https://reviews.llvm.org/D38201

llvm-svn: 314375
2017-09-28 02:45:42 +00:00
Chandler Carruth 4a000883c7 [LoopSimplify] Re-instate r306081 with a bug fix w.r.t. indirectbr.
This was reverted in r306252, but I already had the bug fixed and was
just trying to form a test case.

The original commit factored the logic for forming dedicated exits
inside of LoopSimplify into a helper that could be used elsewhere and
with an approach that required fewer intermediate data structures. See
that commit for full details including the change to the statistic, etc.

The code looked fine to me and my reviewers, but in fact didn't handle
indirectbr correctly -- it left the 'InLoopPredecessors' vector dirty.

If you have code that looks *just* right, you can end up leaking these
predecessors into a subsequent rewrite, and crash deep down when trying
to update PHI nodes for predecessors that don't exist.

I've added an assert that makes the bug much more obvious, and then
changed the code to reliably clear the vector so we don't get this bug
again in some other form as the code changes.

I've also added a test case that *does* manage to catch this while also
giving some nice positive coverage in the face of indirectbr.

The real code that found this came out of what I think is CPython's
interpreter loop, but any code with really "creative" interpreter loops
mixing indirectbr and other exit paths could manage to tickle the bug.
I was hard to reduce the original test case because in addition to
having a particular pattern of IR, the whole thing depends on the order
of the predecessors which is in turn depends on use list order. The test
case added here was designed so that in multiple different predecessor
orderings it should always end up going down the same path and tripping
the same bug. I hope. At least, it tripped it for me without
manipulating the use list order which is better than anything bugpoint
could do...

llvm-svn: 306257
2017-06-25 22:45:31 +00:00
Daniel Jasper 4c6cd4ccb7 Revert "[LoopSimplify] Factor the logic to form dedicated exits into a utility."
This leads to a segfault. Chandler already has a test case and should be
able to recommit with a fix soon.

llvm-svn: 306252
2017-06-25 17:58:25 +00:00
Chandler Carruth 4ab0f4910a [LoopSimplify] Factor the logic to form dedicated exits into a utility.
I want to use the same logic as LoopSimplify to form dedicated exits in
another pass (SimpleLoopUnswitch) so I wanted to factor it out here.

I also noticed that there is a pretty significantly more efficient way
to implement this than the way the code in LoopSimplify worked. We don't
need to actually retain the set of unique exit blocks, we can just
rewrite them as we find them and use only a set to deduplicate.

This did require changing one part of LoopSimplify to not re-use the
unique set of exits, but it only used it to check that there was
a single unique exit. That part of the code is about to walk the exiting
blocks anyways, so it seemed better to rewrite it to use those exiting
blocks to compute this property on-demand.

I also had to ditch a statistic, but it doesn't seem terribly valuable.

Differential Revision: https://reviews.llvm.org/D34049

llvm-svn: 306081
2017-06-23 04:03:04 +00:00
Chandler Carruth 6bda14b313 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

llvm-svn: 304787
2017-06-06 11:49:48 +00:00
Daniel Berlin 4d0fe64ae3 Kill off the old SimplifyInstruction API by converting remaining users.
llvm-svn: 301673
2017-04-28 19:55:38 +00:00
Xin Tong ebfe01c121 [LoopSimplify] Simplify how we compute UniqueExit
Summary: Simplify how we compute UniqueExit. Reuse ExitBlockSet.

Reviewers: sanjoy, efriedma, hfinkel

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D30182

llvm-svn: 295751
2017-02-21 19:10:58 +00:00
Chandler Carruth 6acdca78a0 [PH] Replace uses of AssertingVH from members of analysis results with
a lazy-asserting PoisoningVH.

AssertVH is fundamentally incompatible with cache-invalidation of
analysis results. The invaliadtion happens after the AssertingVH has
already fired. Instead, use a PoisoningVH that will assert if the
dangling handle is ever used rather than merely be assigned or
destroyed.

This patch also removes all of the (numerous) doomed attempts to work
around this fundamental incompatibility. It is a pretty significant
simplification IMO.

The most interesting change is in the Inliner where we still do some
clearing because we don't want to rely on the coarse grained
invalidation strategy of the containing pass manager. However, I prefer
the approach that contains this logic to the cleanup phase of the
Inliner, and I think we could enhance the CGSCC analysis management
layer to make this even better in the future if desired.

The rest is straight cleanup.

I've also added a test for one of the harder cases to work around: when
a *module analysis* contains many AssertingVHes pointing at functions.

Differential Revision: https://reviews.llvm.org/D29006

llvm-svn: 292928
2017-01-24 12:55:57 +00:00
Chandler Carruth 7fd29cef42 [PM] Sink an LCSSA preservation assert from the LoopSimplify pass into
the library routine shared with the new PM and other code.

This assert checks that when LCSSA preservation is requested we start in
LCSSA form. Without this early assert, given *very* complex test cases
we can hit an assert or crash much later on when trying to preserve
LCSSA.

The new PM's loop simplify doesn't need to (and indeed can't) preserve
LCSSA as the new PM doesn't deal in transforms in the dependency graph.
But we asked the library to and shockingly, this didn't work very well!
Stop doing that. Now the assert will tell us immediately with existing
test cases. Before this, it took a pretty convoluted input to trigger
this.

However, sinking the assert also found a bug in LoopUnroll where we
asked simplifyLoop to preserve LCSSA *right before we reform it*. That's
kinda silly and unsurprising that it wasn't available. =D Stop doing
that too.

We also would assert that the unrolled loop was in LCSSA even if
preserving LCSSA was never requested! I don't have a test case or
anything here. I spotted it by inspection and it seems quite obvious. No
logic change anyways, that's just avoiding a spurrious assert.

llvm-svn: 292710
2017-01-21 04:16:53 +00:00
Daniel Jasper aec2fa352f Revert @llvm.assume with operator bundles (r289755-r289757)
This creates non-linear behavior in the inliner (see more details in
r289755's commit thread).

llvm-svn: 290086
2016-12-19 08:22:17 +00:00
Hal Finkel 3ca4a6bcf1 Remove the AssumptionCache
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...

llvm-svn: 289756
2016-12-15 03:02:15 +00:00
Michael Zolotukhin 5020c9971b [LoopSimplify] Preserve LCSSA when removing edges from unreachable blocks.
This fixes PR30454.

llvm-svn: 287379
2016-11-18 21:01:12 +00:00
Florian Hahn 77382be56b [simplifycfg][loop-simplify] Preserve loop metadata in 2 transformations.
insertUniqueBackedgeBlock in lib/Transforms/Utils/LoopSimplify.cpp now
propagates existing llvm.loop metadata to newly the added backedge.

llvm::TryToSimplifyUncondBranchFromEmptyBlock in lib/Transforms/Utils/Local.cpp
now propagates existing llvm.loop metadata to the branch instructions in the
predecessor blocks of the empty block that is removed.

Differential Revision: https://reviews.llvm.org/D26495

llvm-svn: 287341
2016-11-18 13:12:07 +00:00
Igor Laevsky 04423cf785 [LCSSA] Implement linear algorithm for the isRecursivelyLCSSAForm
For each block check that it doesn't have any uses outside of it's innermost loop.

Differential Revision: https://reviews.llvm.org/D25364

llvm-svn: 283877
2016-10-11 13:37:22 +00:00
Michael Zolotukhin 1a554be3b6 [LoopSimplify] When simplifying phis in loop-simplify, do it only if it preserves LCSSA form.
llvm-svn: 282541
2016-09-27 21:03:45 +00:00
Michael Zolotukhin aae168f993 [LoopSimplify] Rebuild LCSSA for the inner loop after separating nested loops.
Summary:
This hopefully fixes PR28825. The problem now was that a value from the
original loop was used in a subloop, which became a sibling after separation.
While a subloop doesn't need an lcssa phi node, a sibling does, and that's
where we broke LCSSA. The most natural way to fix this now is to simply call
formLCSSA on the original loop: it'll do what we've been doing before plus
it'll cover situations described above.

I think we don't need to run formLCSSARecursively here, and we have an assert
to verify this (I've tried testing it on LLVM testsuite + SPECs). I'd be happy
to be corrected here though.

I also changed a run line in the test from '-lcssa -loop-unroll' to
'-lcssa -loop-simplify -indvars', because it exercises LCSSA
preservation to the same extent, but also makes less unrelated
transformation on the CFG, which makes it easier to verify.

Reviewers: chandlerc, sanjoy, silvas

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D23288

llvm-svn: 278173
2016-08-09 22:44:56 +00:00
Sean Silva 36e0d01e13 Consistently use FunctionAnalysisManager
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.

Thanks to David for the suggestion.

llvm-svn: 278077
2016-08-09 00:28:15 +00:00
Sean Silva 0873e7d218 Add some comments linking back to PR28400.
Thanks to Mehdi for the suggestion!

llvm-svn: 277984
2016-08-08 07:03:49 +00:00
Sean Silva 7f21f4b264 [PM] More workaround for PR28400
llvm-svn: 277982
2016-08-08 05:38:06 +00:00
Michael Zolotukhin 442b82f0eb Revert "Revert "[LoopSimplify] Fix updating LCSSA after separating nested loops.""
This reverts commit r277901. Reaaply the commit as it looks like it has
nothing to do with the bots failures.

llvm-svn: 277946
2016-08-07 01:56:54 +00:00
Michael Zolotukhin 09cf304ebc Revert "[LoopSimplify] Fix updating LCSSA after separating nested loops."
This reverts commit r277877.
Try to appease clang-x64-ninja-win7 buildbot.

llvm-svn: 277901
2016-08-06 01:48:51 +00:00
Michael Zolotukhin 4c65c3596a [LoopSimplify] Fix updating LCSSA after separating nested loops.
This fixes PR28825. The problem was that we only checked if a value from
a created inner loop is used in the outer loop, and fixed LCSSA for
them. But we missed to fixup LCSSA for values used in exits of the outer
loop.

llvm-svn: 277877
2016-08-05 21:52:58 +00:00
Michael Zolotukhin 6bc56d552a Revert "Revert r275883 and r275891. They seem to cause PR28608."
This reverts commit r276064, and thus reapplies r275891 and r275883 with
a fix for PR28608.

llvm-svn: 276077
2016-07-20 01:55:27 +00:00
Sean Silva 554efb28d2 Revert r275883 and r275891. They seem to cause PR28608.
Revert "[LoopSimplify] Update LCSSA after separating nested loops."

This reverts commit r275891.

Revert "[LCSSA] Post-process PHI-nodes created by SSAUpdate when constructing LCSSA form."

This reverts commit r275883.

llvm-svn: 276064
2016-07-19 23:54:29 +00:00
Michael Zolotukhin ea5b72825b [LoopSimplify] Update LCSSA after separating nested loops.
Summary:
Usually LCSSA survives this transformation, but in some cases (see
attached test) it doesn't: values from the original loop after
separating might be used from the outer loop. Before the transformation
it was the same loop, so LCSSA phis were not required.

This fixes PR28272.

Reviewers: sanjoy, hfinkel, chandlerc

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D21665

llvm-svn: 275891
2016-07-18 19:44:19 +00:00
Davide Italiano 081fd139b3 [LoopSimplify] Remove a comment which is unlikely to age well.
Chandler pointed out in his review but I forgot to remove before
committing, my bad.

llvm-svn: 274963
2016-07-09 03:27:24 +00:00
Davide Italiano cd96cfd8df [PM] Port LoopSimplify to the new pass manager.
While here move simplifyLoop() function to the new header, as
suggested by Chandler in the review.

Differential Revision:  http://reviews.llvm.org/D21404

llvm-svn: 274959
2016-07-09 03:03:01 +00:00
Benjamin Kramer 135f735af1 Apply clang-tidy's modernize-loop-convert to most of lib/Transforms.
Only minor manual fixes. No functionality change intended.

llvm-svn: 273808
2016-06-26 12:28:59 +00:00
David Majnemer e14e7bc4b8 Revert "[SimplifyCFG] Stop inserting calls to llvm.trap for UB"
This reverts commit r273778, it seems to break UBSan :/

llvm-svn: 273779
2016-06-25 08:19:55 +00:00
David Majnemer d346a37737 [SimplifyCFG] Stop inserting calls to llvm.trap for UB
SimplifyCFG had logic to insert calls to llvm.trap for two very
particular IR patterns: stores and invokes of undef/null.

While InstCombine canonicalizes certain undefined behavior IR patterns
to stores of undef, phase ordering means that this cannot be relied upon
in general.

There are much better tools than llvm.trap: UBSan and ASan.

N.B. I could be argued into reverting this change if a clear argument as
to why it is important that we synthesize llvm.trap for stores, I'd be
hard pressed to see why it'd be useful for invokes...

llvm-svn: 273778
2016-06-25 08:04:19 +00:00
Davide Italiano 9d305d707e [LoopSimplify] Analyses do not need to be member variables.
In preparation for porting this pass to the new PM.

llvm-svn: 272818
2016-06-15 18:51:25 +00:00
Michael Zolotukhin 8e7e76729d [LoopSimplify] Preserve LCSSA when merging exit blocks.
Summary:
This fixes PR26682. Also add LCSSA as a preserved pass to LoopSimplify,
that looks correct to me and allows to write a test for the issue.

Reviewers: chandlerc, bogner, sanjoy

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D21112

llvm-svn: 272224
2016-06-08 23:13:21 +00:00
Davide Italiano 2d5ab0a56a [PM] LoopSimplify. Remove unneeded pass dependencies. NFCI.
llvm-svn: 272140
2016-06-08 13:56:59 +00:00
Chandler Carruth 49c22190d0 [PM] Port of the DepndenceAnalysis to the new PM.
Ported DA to the new PM by splitting the former DependenceAnalysis Pass
into a DependenceInfo result type and DependenceAnalysisWrapperPass type
and adding a new PM-style DependenceAnalysis analysis pass returning the
DependenceInfo.

Patch by Philip Pfaffe, most of the review by Justin.

Differential Revision: http://reviews.llvm.org/D18834

llvm-svn: 269370
2016-05-12 22:19:39 +00:00
David Majnemer c67668ff21 [LoopSimplify] Reuse changeToUnreachable
Use existing functionality provided in changeToUnreachable instead of
reinventing it in LoopSimplify.

No functionality change is intended.

llvm-svn: 258663
2016-01-24 19:32:52 +00:00
Justin Bogner 843fb204b7 LPM: Stop threading `Pass *` through all of the loop utility APIs. NFC
A large number of loop utility functions take a `Pass *` and reach
into it to find out which analyses to preserve. There are a number of
problems with this:

- The APIs have access to pretty well any Pass state they want, so
  it's hard to tell what they may or may not do.

- Other APIs have copied these and pass around a `Pass *` even though
  they don't even use it. Some of these just hand a nullptr to the API
  since the callers don't even have a pass available.

- Passes in the new pass manager don't work like the current ones, so
  the APIs can't be used as is there.

Instead, we should explicitly thread the analysis results that we
actually care about through these APIs. This is both simpler and more
reusable.

llvm-svn: 255669
2015-12-15 19:40:57 +00:00
Duncan P. N. Exon Smith 5b4c837c58 TransformUtils: Remove implicit ilist iterator conversions, NFC
Continuing the work from last week to remove implicit ilist iterator
conversions.  First related commit was probably r249767, with some more
motivation in r249925.  This edition gets LLVMTransformUtils compiling
without the implicit conversions.

No functional change intended.

llvm-svn: 250142
2015-10-13 02:39:05 +00:00
Chandler Carruth 7b560d40bd [PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups.

This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:

- FunctionAAResults is a type-erasing alias analysis results aggregation
  interface to walk a single query across a range of results from
  different alias analyses. Currently this is function-specific as we
  always assume that aliasing queries are *within* a function.

- AAResultBase is a CRTP utility providing stub implementations of
  various parts of the alias analysis result concept, notably in several
  cases in terms of other more general parts of the interface. This can
  be used to implement only a narrow part of the interface rather than
  the entire interface. This isn't really ideal, this logic should be
  hoisted into FunctionAAResults as currently it will cause
  a significant amount of redundant work, but it faithfully models the
  behavior of the prior infrastructure.

- All the alias analysis passes are ported to be wrapper passes for the
  legacy PM and new-style analysis passes for the new PM with a shared
  result object. In some cases (most notably CFL), this is an extremely
  naive approach that we should revisit when we can specialize for the
  new pass manager.

- BasicAA has been restructured to reflect that it is much more
  fundamentally a function analysis because it uses dominator trees and
  loop info that need to be constructed for each function.

All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.

The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.

This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.

Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.

One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.

Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.

Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.

Differential Revision: http://reviews.llvm.org/D12080

llvm-svn: 247167
2015-09-09 17:55:00 +00:00
Chandler Carruth 2f1fd1658f [PM] Port ScalarEvolution to the new pass manager.
This change makes ScalarEvolution a stand-alone object and just produces
one from a pass as needed. Making this work well requires making the
object movable, using references instead of overwritten pointers in
a number of places, and other refactorings.

I've also wired it up to the new pass manager and added a RUN line to
a test to exercise it under the new pass manager. This includes basic
printing support much like with other analyses.

But there is a big and somewhat scary change here. Prior to this patch
ScalarEvolution was never *actually* invalidated!!! Re-running the pass
just re-wired up the various other analyses and didn't remove any of the
existing entries in the SCEV caches or clear out anything at all. This
might seem OK as everything in SCEV that can uses ValueHandles to track
updates to the values that serve as SCEV keys. However, this still means
that as we ran SCEV over each function in the module, we kept
accumulating more and more SCEVs into the cache. At the end, we would
have a SCEV cache with every value that we ever needed a SCEV for in the
entire module!!! Yowzers. The releaseMemory routine would dump all of
this, but that isn't realy called during normal runs of the pipeline as
far as I can see.

To make matters worse, there *is* actually a key that we don't update
with value handles -- there is a map keyed off of Loop*s. Because
LoopInfo *does* release its memory from run to run, it is entirely
possible to run SCEV over one function, then over another function, and
then lookup a Loop* from the second function but find an entry inserted
for the first function! Ouch.

To make matters still worse, there are plenty of updates that *don't*
trip a value handle. It seems incredibly unlikely that today GVN or
another pass that invalidates SCEV can update values in *just* such
a way that a subsequent run of SCEV will incorrectly find lookups in
a cache, but it is theoretically possible and would be a nightmare to
debug.

With this refactoring, I've fixed all this by actually destroying and
recreating the ScalarEvolution object from run to run. Technically, this
could increase the amount of malloc traffic we see, but then again it is
also technically correct. ;] I don't actually think we're suffering from
tons of malloc traffic from SCEV because if we were, the fact that we
never clear the memory would seem more likely to have come up as an
actual problem before now. So, I've made the simple fix here. If in fact
there are serious issues with too much allocation and deallocation,
I can work on a clever fix that preserves the allocations (while
clearing the data) between each run, but I'd prefer to do that kind of
optimization with a test case / benchmark that shows why we need such
cleverness (and that can test that we actually make it faster). It's
possible that this will make some things faster by making the SCEV
caches have higher locality (due to being significantly smaller) so
until there is a clear benchmark, I think the simple change is best.

Differential Revision: http://reviews.llvm.org/D12063

llvm-svn: 245193
2015-08-17 02:08:17 +00:00
David Majnemer eb518bd5d8 Drive-by fixes for LandingPad -> EHPad
This change was done as an audit and is by inspection.  The new EH
system is still very much a work in progress.  NFC for the landingpad
case.

llvm-svn: 243965
2015-08-04 08:21:40 +00:00
David Majnemer 654e130b6e New EH representation for MSVC compatibility
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support.  Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.

Differential Revision: http://reviews.llvm.org/D11097

llvm-svn: 243766
2015-07-31 17:58:14 +00:00
Chandler Carruth 96ada25bf3 [PM/AA] Remove all of the dead AliasAnalysis pointers being threaded
through APIs that are no longer necessary now that the update API has
been removed.

This will make changes to the AA interfaces significantly less
disruptive (I hope). Either way, it seems like a really nice cleanup.

llvm-svn: 242882
2015-07-22 09:52:54 +00:00
Chandler Carruth a1032a0f7c [PM/AA] Remove the last of the legacy update API from AliasAnalysis as
part of simplifying its interface and usage in preparation for porting
to work with the new pass manager.

Note that this will likely expose that we have dead arguments, members,
and maybe even pass requirements for AA. I'll be cleaning those up in
seperate patches. This just zaps the actual update API.

Differential Revision: http://reviews.llvm.org/D11325

llvm-svn: 242881
2015-07-22 09:49:59 +00:00