MachineInstr.h and MachineInstrBuilder.h are very popular headers,
widely included across all LLVM backends. It turns out that there only a
handful of TUs that actually care about DI operands on MachineInstrs.
After this change, touching DebugInfoMetadata.h and rebuilding llc only
needs 112 actions instead of 542.
llvm-svn: 266351
This code was creating a new type in the global context, regardless
of which context the user is sitting in, what can possibly go wrong?
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266275
It is very likely that the swiftself parameter is alive throughout most
functions function so putting it into a callee save register should
avoid spills for the callers with only a minimum amount of extra spills
in the callees.
Currently the generated code is correct but unnecessarily spills and
reloads arguments passed in callee save registers, I will address this
in upcoming patches.
This also adds a missing check that for tail calls the preserved value
of the caller must be the same as the callees parameter.
Differential Revision: http://reviews.llvm.org/D18902
llvm-svn: 266252
This fixes two use-after-frees in selectLEA64_32Addr. If matchAddress
matches an ADD with an AND as an operand, and that AND hits one of the
"heroic transforms" that folds masks and shifts, we end up with N
pointing to an SDNode that was deleted. Make sure we're done accessing
it before that.
Found by ASan with the recycling allocator changes in llvm.org/PR26808.
llvm-svn: 266130
Restrict the max length of long nops for Lakemont to 7. Experiments on MCU
benchmarks (Dhrystone, Coremark) show that this is the most optimal length.
Differential Revision: http://reviews.llvm.org/D18897
llvm-svn: 265924
Extend the existing lowering of vXi8 multiplies to support v64i8 on avx512bw targets.
I added the Lower512IntArith helper function to help with this - not sure how often this could be used in the future, but it seemed better than putting all that logic inside LowerMUL.
Differential Revision: http://reviews.llvm.org/D18937
llvm-svn: 265902
This patch adds support for decoding XOP VPPERM instruction when it represents a basic shuffle.
The mask decoding required the existing MCInstrLowering code to be updated to support binary shuffles - the implementation now matches what is done in X86InstrComments.cpp.
Differential Revision: http://reviews.llvm.org/D18441
llvm-svn: 265874
This is a cleanup patch for SSP support in LLVM. There is no functional change.
llvm.stackprotectorcheck is not needed, because SelectionDAG isn't
actually lowering it in SelectBasicBlock; rather, it adds check code in
FinishBasicBlock, ignoring the position where the intrinsic is inserted
(See FindSplitPointForStackProtector()).
llvm-svn: 265851
As discussed on D18441 - auto brief is used so we don't need /brief, we don't need to include the function name and added some missing descriptions.
llvm-svn: 265785
Re-apply r265450 which caused PR27245 and was reverted in r265559
because of a wrong generalization: the fetch_and_add->add_and_fetch
combine only works in specific, but pretty common, cases:
(icmp slt x, 0) -> (icmp sle (add x, 1), 0)
(icmp sge x, 0) -> (icmp sgt (add x, 1), 0)
(icmp sle x, 0) -> (icmp slt (sub x, 1), 0)
(icmp sgt x, 0) -> (icmp sge (sub x, 1), 0)
Original Message:
We only generate LOCKed versions of add/sub when the result is unused.
It often happens that the result is used, but only by a comparison. We
can optimize those out by reusing EFLAGS, which lets us use the proper
instructions, instead of having to fallback to LXADD.
Instead of doing this as an MI peephole (as we do for the other
non-LOCKed (really, non-MR) forms), do it in ISel. It becomes quite
tricky later.
This also makes it eventually possible to stop expanding and/or/xor
if the only user is an icmp (also see D18141).
This uses the LOCK ISD opcodes added by r262244.
Differential Revision: http://reviews.llvm.org/D17633
llvm-svn: 265636
Third time's the charm? The previous attempt (r265345) caused ASan test
failures on X86, as broken CFI caused stack traces to not work.
This version of the patch makes sure not to merge with stack adjustments
that have CFI, and to not add merged instructions' offests to the CFI
about to be generated.
This is already covered by the lit tests; I just got the expectations
wrong previously.
llvm-svn: 265623
Summary:
In the context of http://wg21.link/lwg2445 C++ uses the concept of
'stronger' ordering but doesn't define it properly. This should be fixed
in C++17 barring a small question that's still open.
The code currently plays fast and loose with the AtomicOrdering
enum. Using an enum class is one step towards tightening things. I later
also want to tighten related enums, such as clang's
AtomicOrderingKind (which should be shared with LLVM as a 'C++ ABI'
enum).
This change touches a few lines of code which can be improved later, I'd
like to keep it as NFC for now as it's already quite complex. I have
related changes for clang.
As a follow-up I'll add:
bool operator<(AtomicOrdering, AtomicOrdering) = delete;
bool operator>(AtomicOrdering, AtomicOrdering) = delete;
bool operator<=(AtomicOrdering, AtomicOrdering) = delete;
bool operator>=(AtomicOrdering, AtomicOrdering) = delete;
This is separate so that clang and LLVM changes don't need to be in sync.
Reviewers: jyknight, reames
Subscribers: jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D18775
llvm-svn: 265602
Bionic has a defined thread-local location for the stack protector
cookie. Emit a direct load instead of going through __stack_chk_guard.
llvm-svn: 265481
Some Include What You Use suggestions were used too.
Use anonymous namespaces in source files.
Differential revision: http://reviews.llvm.org/D18778
llvm-svn: 265454
We only generate LOCKed versions of add/sub when the result is unused.
It often happens that the result is used, but only by a comparison. We
can optimize those out by reusing EFLAGS, which lets us use the proper
instructions, instead of having to fallback to LXADD.
Instead of doing this as an MI peephole (as we do for the other
non-LOCKed (really, non-MR) forms), do it in ISel. It becomes quite
tricky later.
This also makes it eventually possible to stop expanding and/or/xor
if the only user is an icmp (also see D18141).
This uses the LOCK ISD opcodes added by r262244.
Differential Revision: http://reviews.llvm.org/D17633
llvm-svn: 265450
The original commit miscompiled things on 32-bit Windows, e.g. a Clang
boostrap. It turns out that mergeSPUpdates() was a bit too generous in
what it interpreted as a stack adjustment, causing the following code:
addl $12, %esp
leal -4(%ebp), %esp
To be "optimized" into simply:
addl $8, %esp
This commit tightens up mergeSPUpdates() and includes a new test
(test14 in movtopush.ll) for this situation.
llvm-svn: 265345
We can only perform a tail call to a callee that preserves all the
registers that the caller needs to preserve.
This situation happens with calling conventions like preserver_mostcc or
cxx_fast_tls. It was explicitely handled for fast_tls and failing for
preserve_most. This patch generalizes the check to any calling
convention.
Related to rdar://24207743
Differential Revision: http://reviews.llvm.org/D18680
llvm-svn: 265329
Summary:
This adds the same checks that were added in r264593 to all
target-specific passes that run after register allocation.
Reviewers: qcolombet
Subscribers: jyknight, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D18525
llvm-svn: 265313
Implemented truncstore for KNL and skylake-avx512.
Covered vectors from v2i1 to v64i1. We save the value in bits (not in bytes) - v32i1 is saved in 4 bytes.
Differential Revision: http://reviews.llvm.org/D18740
llvm-svn: 265283
Add support for lowering with the MOVMSK instruction to extract vector element signbits to a GPR.
This is an early step towards more optimal handling of vector comparison results.
Differential Revision: http://reviews.llvm.org/D18741
llvm-svn: 265266
Tidied up comments, stripped trailing whitespace, split apart nodes that aren't related.
No change in ordering although there is definitely some scope for it.
llvm-svn: 265263
Follow-up to http://reviews.llvm.org/D18566 and http://reviews.llvm.org/D18676 -
where we noticed that an intermediate splat was being generated for memsets of
non-zero chars.
That was because we told getMemsetStores() to use a 32-bit vector element type,
and it happily obliged by producing that constant using an integer multiply.
The 16-byte test that was added in D18566 is now equivalent for AVX1 and AVX2
(no splats, just a vector load), but we have PR27141 to track that splat difference.
Note that the SSE1 path is not changed in this patch. That can be a follow-up.
This patch should resolve PR27100.
llvm-svn: 265161
Follow-up to D18566 - where we noticed that an intermediate splat was being
generated for memsets of non-zero chars.
That was because we told getMemsetStores() to use a 32-bit vector element type,
and it happily obliged by producing that constant using an integer multiply.
The tests that were added in the last patch are now equivalent for AVX1 and AVX2
(no splats, just a vector load), but we have PR27141 to track that splat difference.
In the new tests, the splat via shuffling looks ok to me, but there might be some
room for improvement depending on uarch there.
Note that the SSE1/2 paths are not changed in this patch. That can be a follow-up.
This patch should resolve PR27100.
Differential Revision: http://reviews.llvm.org/D18676
llvm-svn: 265148
This will become necessary in a subsequent change to make this method
merge adjacent stack adjustments, i.e. it might erase the previous
and/or next instruction.
It also greatly simplifies the calls to this function from Prolog-
EpilogInserter. Previously, that had a bunch of logic to resume iteration
after the call; now it just continues with the returned iterator.
Note that this changes the behaviour of PEI a little. Previously,
it attempted to re-visit the new instruction created by
eliminateCallFramePseudoInstr(). That code was added in r36625,
but I can't see any reason for it: the new instructions will obviously
not be pseudo instructions, they will not have FrameIndex operands,
and we have already accounted for the stack adjustment.
Differential Revision: http://reviews.llvm.org/D18627
llvm-svn: 265036
Change isConsecutiveLoads to check that loads are non-volatile as this
is a requirement for any load merges. Propagate change to two callers.
Reviewers: RKSimon
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18546
llvm-svn: 265013
The size savings are significant, and from what I can tell, both ICC and GCC do this.
Differential Revision: http://reviews.llvm.org/D18573
llvm-svn: 264966
Fix for issue introduced D17297, where we were breaking early from the loop detecting consecutive loads which could leave us thinking a consecutive load with zeros was possible.
llvm-svn: 264922
These checks are redundant and can be removed
Reviewers: hans
Subscribers: llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D18564
llvm-svn: 264872
XOP's VPPERM has some great 'permute operations' that it can do as well as part of shuffling the bytes of a 128-bit vector - in this case we use it to perform BITREVERSE in a single instruction.
llvm-svn: 264870
operations.
Specifically, we had code that tried to badly approximate reconstructing
all of the possible variations on addressing modes in two x86
instructions based on those in one pseudo instruction. This is not the
first bug uncovered with doing this, so stop doing it altogether.
Instead generically and pedantically copy every operand from the address
over to both new instructions, and strip kill flags from any register
operands.
This fixes a subtle bug seen in the wild where we would mysteriously
drop parts of the addressing mode, causing for example the index
argument in the added test case to just be completely ignored.
Hypothetically, this was an extremely bad miscompile because it actually
caused a predictable and leveragable write of a 64bit quantity to an
unintended offset (the first element of the array intead of whatever
other element was intended). As a consequence, in theory this could even
have introduced security vulnerabilities.
However, this was only something that could happen with an atomic
floating point add. No other operation could trigger this bug, so it
seems extremely unlikely to have occured widely in the wild.
But it did in fact occur, and frequently in scientific applications
which were using relaxed atomic updates of a floating point value after
adding a delta. Those would end up being quite badly miscompiled by
LLVM, which is how we found this. Of course, this often looks like
a race condition in the code, but it was actually a miscompile.
I suspect that this whole RELEASE_FADD thing was a complete mistake.
There is no such operation, and I worry that anything other than add
will get remarkably worse codegeneration. But that's not for this
change....
llvm-svn: 264845
Fixed fp_to_uint instruction selection on KNL.
One pattern was missing for <4 x double> to <4 x i32>
Differential Revision: http://reviews.llvm.org/D18512
llvm-svn: 264701
If all a BUILD_VECTOR's source elements are the same bit (AND/XOR/OR) operation type and each has one constant operand, lower to a pair of BUILD_VECTOR and just apply the bit operation to the vectors.
The constant operands will form a constant vector meaning that we still only have a single BUILD_VECTOR to lower and we will have replaced all the scalarized operations with a single SSE equivalent.
Its not in our interest to start make a general purpose vectorizer from this, but I'm seeing enough of these scalar bit operations from the later legalization/scalarization stages to support them at least.
Differential Revision: http://reviews.llvm.org/D18492
llvm-svn: 264666
ICMP instruction selection fails on SKX and KNL for i1 operand.
I use XOR to resolve:
(A == B) is equivalent to (A xor B) == 0
Differential Revision: http://reviews.llvm.org/D18511
llvm-svn: 264566
Currently this is to mainly to prevent scalarization of integer division by constants.
Differential Revision: http://reviews.llvm.org/D18307
llvm-svn: 264511
LowerMul v32i8 on AVX2 needs to split the 256-bit sources to allow sign-extension back to v16i16 to occur. Since this is basically the same as Lower256IntArith we simplify by using that here instead.
llvm-svn: 264506
64-bit, 32-bit and 16-bit move-immediate instructions are 7, 6, and 5 bytes,
respectively, whereas and/or with 8-bit immediate is only three bytes.
Since these instructions imply an additional memory read (which the CPU could
elide, but we don't think it does), restrict these patterns to minsize functions.
Differential Revision: http://reviews.llvm.org/D18374
llvm-svn: 264440
LowerShift was using the same code as Lower256IntArith to split 256-bit vectors into 2 x 128-bit vectors, so now we just call Lower256IntArith.
llvm-svn: 264403
This is the same as r255936, with added logic for avoiding clobbering of the
red zone (PR26023).
Differential Revision: http://reviews.llvm.org/D18246
llvm-svn: 264375
KTEST instruction may be used instead of TEST in this case:
%int_sel3 = bitcast <8 x i1> %sel3 to i8
%res = icmp eq i8 %int_sel3, zeroinitializer
br i1 %res, label %L2, label %L1
Differential Revision: http://reviews.llvm.org/D18444
llvm-svn: 264298
This patch begins adding support for lowering to the XOP VPPERM instruction - adding the X86ISD::VPPERM opcode.
Differential Revision: http://reviews.llvm.org/D18189
llvm-svn: 264260
We need the "return address" of a noreturn call to be within the
bounds of the calling function; TrapUnreachable turns 'unreachable'
into a 'ud2' instruction, which has that desired effect.
Differential Revision: http://reviews.llvm.org/D18414
llvm-svn: 264224
Currently, AnalyzeBranch() fails non-equality comparison between floating points
on X86 (see https://llvm.org/bugs/show_bug.cgi?id=23875). This is because this
function can modify the branch by reversing the conditional jump and removing
unconditional jump if there is a proper fall-through. However, in the case of
non-equality comparison between floating points, this can turn the branch
"unanalyzable". Consider the following case:
jne.BB1
jp.BB1
jmp.BB2
.BB1:
...
.BB2:
...
AnalyzeBranch() will reverse "jp .BB1" to "jnp .BB2" and then "jmp .BB2" will be
removed:
jne.BB1
jnp.BB2
.BB1:
...
.BB2:
...
However, AnalyzeBranch() cannot analyze this branch anymore as there are two
conditional jumps with different targets. This may disable some optimizations
like block-placement: in this case the fall-through behavior is enforced even if
the fall-through block is very cold, which is suboptimal.
Actually this optimization is also done in block-placement pass, which means we
can remove this optimization from AnalyzeBranch(). However, currently
X86::COND_NE_OR_P and X86::COND_NP_OR_E are not reversible: there is no defined
negation conditions for them.
In order to reverse them, this patch defines two new CondCode X86::COND_E_AND_NP
and X86::COND_P_AND_NE. It also defines how to synthesize instructions for them.
Here only the second conditional jump is reversed. This is valid as we only need
them to do this "unconditional jump removal" optimization.
Differential Revision: http://reviews.llvm.org/D11393
llvm-svn: 264199
This should be hoisted further up so it can be used in DAGCombiner and other backends,
but I'm limiting the scope in the interest of patch minimalism.
It's not quite NFC because some of the replaced code was using an 'if' check rather
than a 'while' loop, so those cases would only look through a single bitcast.
llvm-svn: 264186
Improve vector extension of vectors on hardware without dedicated VSEXT/VZEXT instructions.
We already convert these to SIGN_EXTEND_VECTOR_INREG/ZERO_EXTEND_VECTOR_INREG but can further improve this by using the legalizer instead of prematurely splitting into legal vectors in the combine as this only properly helps for lowering to VSEXT/VZEXT.
Removes a lot of unnecessary any_extend + mask pattern - (Fix for PR25718).
Reapplied with a fix for PR26953 (missing vector widening legalization).
Differential Revision: http://reviews.llvm.org/D17932
llvm-svn: 264062
Improve computeZeroableShuffleElements to be able to peek through bitcasts to extract zero/undef values from BUILD_VECTOR nodes of different element sizes to the shuffle mask.
Differential Revision: http://reviews.llvm.org/D14261
llvm-svn: 263906
We were being too aggressive in trying to combine a shuffle into a blend-with-zero pattern, often resulting in a endless loop of contrasting combines
This patch stops the combine if we already have a blend in place (means we miss some domain corrections)
llvm-svn: 263717
Converting masked vector loads to regular vector loads for x86 AVX should always be a win.
I raised the legality issue of reading the extra memory bytes on llvm-dev. I did not see any
objections.
1. x86 already does this kind of optimization for multiple scalar loads -> vector load.
2. If other targets have the same flexibility, we could move this transform up to CGP or DAGCombiner.
Differential Revision: http://reviews.llvm.org/D18094
llvm-svn: 263446
The SSE41 v8i16 shift lowering using (v)pblendvb is great for non-constant shift amounts, but if it is constant then we can efficiently reduce the VSELECT to shuffles with the pre-SSE41 lowering.
llvm-svn: 263383
cmpxchg[8|16]b uses RBX as one of its argument.
In other words, using this instruction clobbers RBX as it is defined to hold one
the input. When the backend uses dynamically allocated stack, RBX is used as a
reserved register for the base pointer.
Reserved registers have special semantic that only the target understands and
enforces, because of that, the register allocator don’t use them, but also,
don’t try to make sure they are used properly (remember it does not know how
they are supposed to be used).
Therefore, when RBX is used as a reserved register but defined by something that
is not compatible with that use, the register allocator will not fix the
surrounding code to make sure it gets saved and restored properly around the
broken code. This is the responsibility of the target to do the right thing with
its reserved register.
To fix that, when the base pointer needs to be preserved, we use a different
pseudo instruction for cmpxchg that save rbx.
That pseudo takes two more arguments than the regular instruction:
- One is the value to be copied into RBX to set the proper value for the
comparison.
- The other is the virtual register holding the save of the value of RBX as the
base pointer. This saving is done as part of isel (i.e., we emit a copy from
rbx).
cmpxchg_save_rbx <regular cmpxchg args>, input_for_rbx_reg, save_of_rbx_as_bp
This gets expanded into:
rbx = copy input_for_rbx_reg
cmpxchg <regular cmpxchg args>
rbx = save_of_rbx_as_bp
Note: The actual modeling of the pseudo is a bit more complicated to make sure
the interferes that appears after the pseudo gets expanded are properly modeled
before that expansion.
This fixes PR26883.
llvm-svn: 263325
Improve vector extension of vectors on hardware without dedicated VSEXT/VZEXT instructions.
We already convert these to SIGN_EXTEND_VECTOR_INREG/ZERO_EXTEND_VECTOR_INREG but can further improve this by using the legalizer instead of prematurely splitting into legal vectors in the combine as this only properly helps for lowering to VSEXT/VZEXT.
Removes a lot of unnecessary any_extend + mask pattern - (Fix for PR25718).
Differential Revision: http://reviews.llvm.org/D17932
llvm-svn: 263303
Its not enough that we test for SSSE3 - that's only OK for 128-bit vectors - we also need to test for AVX2 / AVX512BW for 256/512 bit vector cases.
llvm-svn: 263239
Looking at the IR definition of a masked load made me realize
there was no reason to use a shuffle here, so we don't need
to convert the format of the mask at all.
llvm-svn: 263167
Generalise the existing SIGN_EXTEND to SIGN_EXTEND_VECTOR_INREG combine to support zero extension as well and get rid of a lot of unnecessary ANY_EXTEND + mask patterns.
Reapplied with a fix for PR26870 (avoid premature use of TargetConstant in ZERO_EXTEND_VECTOR_INREG expansion).
Differential Revision: http://reviews.llvm.org/D17691
llvm-svn: 263159
When trying to replace an add to esp with pops, we need to choose dead
registers to pop into. Registers clobbered by the call and not imp-def'd
by it should be safe. Except that it's not enough to check the register
itself isn't defined, we also need to make sure no overlapping registers
are defined either.
This fixes PR26711.
Differential Revision: http://reviews.llvm.org/D18029
llvm-svn: 263139
This patch reorders the combining of target shuffle masks so that when a unary shuffle takes a binary shuffle as its input but only references one of its inputs it can correctly combine into a unary shuffle mask.
This is starting to encroach on the purpose of resolveTargetShuffleInputs, but I don't want to remove it until we definitely know we won't need it for full binary shuffle combining.
There is a lot more work before we can properly support binary target shuffle masks but this was an easy case to add support for.
Differential Revision: http://reviews.llvm.org/D17858
llvm-svn: 263102
Operation SCALAR_TO_VECTOR for v64i8 and v32i16 should be lowered if BW feature is "on".
Differential Revision: http://reviews.llvm.org/D17994
llvm-svn: 263097
The irony of this patch is that one CPU that is affected is AMD Jaguar, and Jaguar
has a completely double-pumped AVX implementation. But getting the cost model to
reflect that is a much bigger problem. The small goal here is simply to improve on
the lie that !AVX2 == SandyBridge.
Differential Revision: http://reviews.llvm.org/D18000
llvm-svn: 263069
Instead of a variable-blend instruction, form a blend with immediate because those are always cheaper.
Differential Revision: http://reviews.llvm.org/D17899
llvm-svn: 263067
The fix consisting in using the library call for atomic compare and swap when
the instruction is not safe to use may be incorrect. Indeed the library call may
not exist on all platform. In other words, we need a better fix!
llvm-svn: 262943
Until now curly braces could only be used in MS inline assembly to mark block start/end.
All curly braces were removed completely at a very early stage.
This approach caused bugs like:
"m{o}v eax, ebx" turned into "mov eax, ebx" without any error.
In addition, AVX-512 added special operands (e.g., k registers), which are also surrounded by curly braces that mark them as such.
Now, we need to keep the curly braces and identify at a later stage if they are marking block start/end (if so, ignore them), or surrounding special AVX-512 operands (if so, parse them as such).
This patch fixes the bug described above and enables the use of AVX-512 special operands.
This commit is the the llvm part of the patch.
The clang part of the review is: http://reviews.llvm.org/D17766
The llvm part of the review is: http://reviews.llvm.org/D17767
Differential Revision: http://reviews.llvm.org/D17767
llvm-svn: 262843
Patch to add support for target shuffle combining of X86ISD::VPERMV3 nodes, including support for detecting unary shuffles.
This uncovered several issues with the X86ISD::VPERMV3 shuffle mask decoding of non-64 bit shuffle mask elements - the bit masking wasn't being correctly computed.
Removed non-constant pool mask decode path as we have no way of testing it right now.
Differential Revision: http://reviews.llvm.org/D17916
llvm-svn: 262809
Added support for decoding VPERMILPS variable shuffle masks that aren't in the constant pool.
Added target shuffle mask decoding for SCALAR_TO_VECTOR+VZEXT_MOVL cases - these can happen for v2i64 constant re-materialization
Followup to D17681
llvm-svn: 262784
btver1 is a SSSE3/SSE4a only CPU - it doesn't have AVX and doesn't support XSAVE.
Differential Revision: http://reviews.llvm.org/D17683
llvm-svn: 262782
When the lowering of the setjmp intrinsic requires
a global base pointer to be set, make sure such pointer
gets defined by the CGBR pass.
This fixes PR26742.
llvm-svn: 262762
cmpxchgXXb uses RBX as one of its implicit argument. I.e., when
we use that instruction we need to clobber RBX. This is generally
fine, expect when RBX is a reserved register because in that case,
the register allocator will not track its value and will not
save and restore it when interferences occur.
rdar://problem/24851412
llvm-svn: 262759
The x86 ret instruction has a 16 bit immediate indicating how many bytes
to pop off of the stack beyond the return address.
There is a problem when extremely large structs are passed by value: we
might not be able to fit the number of bytes to pop into the return
instruction.
To fix this, expand RET_FLAG a little later and use a special sequence
to clean the stack:
pop %ecx ; return address is now in %ecx
add $n, %esp ; clean the stack
push %ecx ; bring the return address back on the stack
ret ; pop the return address and jmp to it's value
llvm-svn: 262755
The variable mask form of VPERMILPD/VPERMILPS were only partially implemented, with much of it still performed as an intrinsic.
This patch properly defines the instructions in terms of X86ISD::VPERMILPV, permitting the opcode to be easily combined as a target shuffle.
Differential Revision: http://reviews.llvm.org/D17681
llvm-svn: 262635
Fixed the ordering to check first for X86 interrupt handler then for MCU target.
Differential Revision: http://reviews.llvm.org/D17801
llvm-svn: 262628
That's not the case for VPERMV/VPERMV3, which cover all possible
combinations (the C intrinsics use a different order; the AVX vs
AVX512 intrinsics are different still).
Since:
r246981 AVX-512: Lowering for 512-bit vector shuffles.
VPERMV is recognized in getTargetShuffleMask.
This breaks assumptions in most callers, as they expect
the non-mask operands to start at index 0.
VPERMV has the mask as operand #0; VPERMV3 has it in the middle.
Instead of the faulty assumption, have getTargetShuffleMask return
its operands as well.
One alternative we considered was to change the operand order of
VPERMV, but we agreed to stick to the instruction order, as there
are more AVX512 weirdness to cover (vpermt2/vpermi2 in particular).
Differential Revision: http://reviews.llvm.org/D17041
llvm-svn: 262627
Generalise the existing SIGN_EXTEND to SIGN_EXTEND_VECTOR_INREG combine to support zero extension as well and get rid of a lot of unnecessary ANY_EXTEND + mask patterns.
Differential Revision: http://reviews.llvm.org/D17691
llvm-svn: 262599
The code was previously not able to track a boolean argument
at a call site back to the formal argument of the caller.
Differential Revision: http://reviews.llvm.org/D17786
llvm-svn: 262575
Catch objects with a displacement of zero do not initialize a catch
object. The displacement is relative to %rsp at the end of the
function's prologue for x86_64 targets.
If we place an object at the top-of-stack, we will end up wit a
displacement of zero resulting in our catch object remaining
uninitialized.
Address this by creating our catch objects as fixed objects. We will
ensure that the UnwindHelp object is created after the catch objects so
that no catch object will have a displacement of zero.
Differential Revision: http://reviews.llvm.org/D17823
llvm-svn: 262546
This reverts commit r262370.
It turns out there is code out there that does sequences of allocas
greater than 4K: http://crbug.com/591404
The goal of this change was to improve the code size of inalloca call
sequences, but we got tangled up in the mess of dynamic allocas.
Instead, we should come back later with a separate MI pass that uses
dominance to optimize the full sequence. This should also be able to
remove the often unneeded stacksave/stackrestore pairs around the call.
llvm-svn: 262505
We have a number of useful lowering strategies for VBROADCAST instructions (both from memory and register element 0) which the 128-bit form of the MOVDDUP instruction can make use of.
This patch tweaks lowerVectorShuffleAsBroadcast to enable it to broadcast 2f64 args using MOVDDUP as well.
It does require a slight tweak to the lowerVectorShuffleAsBroadcast mechanism as the existing MOVDDUP lowering uses isShuffleEquivalent which can match binary shuffles that can lower to (unary) broadcasts.
Differential Revision: http://reviews.llvm.org/D17680
llvm-svn: 262478
We modeled the RDFLAGS{32,64} operations as "using" {E,R}FLAGS.
While technically correct, this is not be desirable for folks who want
to examine aspects of the FLAGS register which are not related to
computation like whether or not CPUID is a valid instruction.
Differential Revision: http://reviews.llvm.org/D17782
llvm-svn: 262465
For some instructions the register is not the last operand and the immediate handling had to detect this and hardcode the index to find it. It also required CurOp to be pointing at the last operand handled in the Form switch whereas for any instruction it would be pointing at the next operand.
Now we just capture the value in the Form switch when we know exactly where it is and the CurOp pointer can behave normally.
llvm-svn: 262462
This isn't quite NFC because some of the SDLocs may change which could
cause scheduling differences. But no regression tests are affected and
there is no functional change intended.
llvm-svn: 262391
TableGen checks at compiletime that for scheduling models with
"CompleteModel = 1" one of the following holds:
- Is marked with the hasNoSchedulingInfo flag
- The instruction is a subclass of Sched
- There are InstRW definitions in the scheduling model
Typical steps necessary to complete a model:
- Ensure all pseudo instructions that are expanded before machine
scheduling (usually everything handled with EmitYYY() functions in
XXXTargetLowering).
- If a CPU does not support some instructions mark the corresponding
resource unsupported: "WriteRes<WriteXXX, []> { let Unsupported = 1; }".
- Add missing scheduling information.
Differential Revision: http://reviews.llvm.org/D17747
llvm-svn: 262384
The _chkstk function is called by the compiler to probe the stack in an
order consistent with Windows' expectations. However, it is possible to
elide the call to _chkstk and manually adjust the stack pointer if we
can prove that the allocation is fixed size and smaller than the probe
size.
This shrinks chrome.dll, chrome_child.dll and chrome.exe by a
cummulative ~133 KB.
Differential Revision: http://reviews.llvm.org/D17679
llvm-svn: 262370
In the code below on 32-bit targets, x would previously get forwarded to g()
without sign-extension to 32 bits as required by the parameter attribute.
void g(signed short);
void f(unsigned short x) {
g(x);
}
llvm-svn: 262352
This is long-standing dirtiness, as acknowledged by r77582:
The current trick is to select it into a merge_values with
the first definition being an implicit_def. The proper solution is
to add new ISD opcodes for the no-output variant.
Doing this before selection will let us combine away some constructs.
Differential Revision: http://reviews.llvm.org/D17659
llvm-svn: 262244
32-bit X86 EH on Windows utilizes a stack of registration nodes
allocated and deallocated on entry/exit. A registration node contains a
bunch of EH personality specific information like which try-state we are
currently in.
Because a setjmp target allows control flow from arbitrary program
points, there is no way to ensure that the try-state we are in is
correctly updated once we transfer control.
MSVC compatible compilers, like MSVC and ICC, utilize runtime helpers to
reinitialize the try-state when a longjmp occurs. This is implemented
by adding additional arguments to _setjmp3: the desired try-state and
a helper routine to update the try-state.
Differential Revision: http://reviews.llvm.org/D17721
llvm-svn: 262241
Change MachineInstr API to prefer MachineInstr& over MachineInstr*
whenever the parameter is expected to be non-null. Slowly inching
toward being able to fix PR26753.
llvm-svn: 262149
This is one of the cases shown in:
https://llvm.org/bugs/show_bug.cgi?id=26701
Shift and negate is what InstCombine appears to prefer, so I've started with that pattern.
Note that the 'pcmpeq' instructions are always generating the negative one for the actual
'pcmpgt' comparison in each case (side note: why isn't there an alias mnemonic for that?).
Differential Revision: http://reviews.llvm.org/D17630
llvm-svn: 262036
Currently aligned is what is being used so remove the redundant patterns for the unaligned versions. But don't do this for the byte and word vector types since they don't have aligned versions.
llvm-svn: 261985
Part 2 of 2
This patch add support for combining target shuffles into blends-with-zero.
Differential Revision: http://reviews.llvm.org/D17483
llvm-svn: 261745
Part 1 of 2
This patch attempts to replace the insertion of zero scalars with a vector blend with zero, avoiding the use of the integer insertion instructions (which are particularly slow on many targets).
(Part 2 will add support for combining multiple blends-with-zero).
Differential Revision: http://reviews.llvm.org/D17483
llvm-svn: 261743
PerformShuffleCombine should be usable by unary and binary target shuffles, but was attempting to get the first two operands whatever the instruction type. Since these are only used for VECTOR_SHUFFLE instructions for one particular combine I've moved them inside the relevant if statement.
llvm-svn: 261727
This function is used in exactly one place, and only in asserts
builds. Move it a few lines up before the use and only define it when
asserts are enabled. Fixes the release build under -Werror.
Also remove the forward declaration and commentary that was basically
identical to the code itself.
llvm-svn: 261722
Change TargetInstrInfo API to take `MachineInstr&` instead of
`MachineInstr*` in the functions related to predicated instructions
(I'll try to come back later and get some of the rest). All of these
functions require non-null parameters already, so references are more
clear. As a bonus, this happens to factor away a host of implicit
iterator => pointer conversions.
No functionality change intended.
llvm-svn: 261605
Delete MachineInstr::getIterator(), since the term "iterator" is
overloaded when talking about MachineInstr.
- Downcast to ilist_node in iplist::getNextNode() and getPrevNode() so
that ilist_node::getIterator() is still available.
- Add it back as MachineInstr::getInstrIterator(). This matches the
naming in MachineBasicBlock.
- Add MachineInstr::getBundleIterator(). This is explicitly called
"bundle" (not matching MachineBasicBlock) to disintinguish it clearly
from ilist_node::getIterator().
- Update all calls. Some of these I switched to `auto` to remove
boiler-plate, since the new name is clear about the type.
There was one call I updated that looked fishy, but it wasn't clear what
the right answer was. This was in X86FrameLowering::inlineStackProbe(),
added in r252578 in lib/Target/X86/X86FrameLowering.cpp. I opted to
leave the behaviour unchanged, but I'll reply to the original commit on
the list in a moment.
llvm-svn: 261504
I missed == and != when I removed implicit conversions between iterators
and pointers in r252380 since they were defined outside ilist_iterator.
Since they depend on getNodePtrUnchecked(), they indirectly rely on UB.
This commit removes all uses of these operators. (I'll delete the
operators themselves in a separate commit so that it can be easily
reverted if necessary.)
There should be NFC here.
llvm-svn: 261498
Add support for the case where we have a consecutive load (which must include the first + last elements) with a mixture of undef/zero elements. We load the vector and then apply a shuffle to clear the zero'd elements.
Differential Revision: http://reviews.llvm.org/D17297
llvm-svn: 261490
Summary:
- Rename `"skylake"` == SkylakeServerProc to `"skylake-avx512"`
- Change `"skylake"` to denote SkylakeClientProc
- Fix the detection of cpu family 6 and model 94 to be
SkylakeClientProc instead of SkylakeServerProc
- Remove the `"cnl"` for CannonLake
Reviewers: craig.topper, delena
Subscribers: zansari, echristo, qcolombet, RKSimon, spatel, DavidKreitzer, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D17090
llvm-svn: 261482
COFF doesn't have sections with mergeable contents. Instead, each
constant pool entry ends up in a COMDAT section. The linker, when
choosing between COMDAT sections, doesn't choose the max alignment of
the two sections. You just get whatever alignment was on the section.
If one constant needed a higher alignment in one object file from
another one, then we will get into trouble if the linker chooses the
lower alignment one.
Instead, lets promote the alignment of the constant pool entry to make
sure we don't use an under aligned constant with an instruction which
assumed otherwise.
This fixes PR26680.
llvm-svn: 261462
Fixed a bug introduced by D16683 when a binary shuffle is simplified to a unary shuffle (with undef/zero sentinel mask indices) - if this resulted in only the second input being used combineX86ShuffleChain failed to take this into account and still referenced the first input.
llvm-svn: 261434
First small step towards fixing PR26667 - we need to ensure that combineX86ShuffleChain only gets called with a valid shuffle input node (a similar issue was found in D17041).
llvm-svn: 261433
TLSADDR nodes are lowered into actuall calls inside MC. In order to prevent
shrink-wrapping from pushing prologue/epilogue past them (which result
in TLS variables being accessed before the stack frame is set up), we
put markers, so that the stack gets adjusted properly.
Thanks to Quentin Colombet for guidance/help on how to fix this problem!
llvm-svn: 261387
Summary:
When optimizing for size, sqrt calls can be incorrectly selected as
AVX512 VSQRT instructions. This is because X86InstrAVX512.td has a
`Requires<[OptForSize]>` in its `avx512_sqrt_scalar` multiclass
definition. Even if the target does not support AVX512, the class can
apparently still be chosen, leading to an incorrect selection of
`vsqrtss`.
In PR26625, this lead to an assertion: Reg >= X86::FP0 && Reg <=
X86::FP6 && "Expected FP register!", because the `vsqrtss` instruction
requires an XMM register, which is not available on i686 CPUs.
Reviewers: grosbach, resistor, joker.eph
Subscribers: spatel, emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D17414
llvm-svn: 261360
This is effectively NFC because Atom is the only in-order x86 subtarget currently,
but the predicate would have become wrong if any other in-order CPU came along.
See related discussion in:
http://reviews.llvm.org/D16836
llvm-svn: 261275
If we know that all of our successors want to be in the exact same
state, it makes sense to hoist the state transition into their common
predecessor.
Differential Revision: http://reviews.llvm.org/D17391
llvm-svn: 261262
In r260133, LLVM was changed to no longer extend i8/i16 return values,
as it's not required by the ABI. However, code was found in the wild
that relies on the old behaviour on Darwin, so this commit reverts
back to that old behaviour for Darwin.
On other platforms, it's less likely that code would be depending on
the old behaviour, as GCC and MSVC haven't been extending such return
values.
llvm-svn: 261235
In cases where the PSHUFB shuffle mask is shared it might not be bitcasted to a vXi8 byte vector. This patch adds support for decoding these wider shuffle masks from the ConstantPool.
The test case in question makes use of this to recognise the shuffle mask is an unary UNPCKL pattern and simplifies accordingly.
llvm-svn: 261201
32-bit x86 Windows targets use a linked-list of nodes allocated on the
stack, referenced to via thread-local storage. The personality routine
interprets one of the fields in the node as a 'state number' which
indicates where the personality routine should transfer control.
State transitions are possible only before call-sites which may throw
exceptions. Our previous scheme had us update the state number before
all call-sites which may throw.
Instead, we can try to minimize the number of times we need to store by
reasoning about the nearest store which dominates the current call-site.
If the last store agrees with the current call-site, then we know that
the state-update is redundant and can be elided.
This is largely straightforward: an RPO walk of the blocks allows us to
correctly forward propagate the information when the function is a DAG.
Currently, loops are not handled optimally and may trigger superfluous
state stores.
Differential Revision: http://reviews.llvm.org/D16763
llvm-svn: 261122
Bug description:
The bug was discovered when test was compiled with -O0.
In case scatter result is DAG root , VectorLegalizer failed (assert) due to LowerMSCATTER() return kmask as result.
Change LowerMSCATTER() to return chain as original node do.
Differential Revision: http://reviews.llvm.org/D17331
llvm-svn: 261090
AVX1 doesn't support the shuffling of 256-bit integer vectors. For 32/64-bit elements we get around this by shuffling as float/double but for 8/16-bit elements (assuming they can't widen) we currently just split, shuffle as 128-bit vectors and concatenate the results back.
This patch adds the ability to lower using the bit-blend patterns before defaulting to the splitting behaviour.
Part 2 of 2
Differential Revision: http://reviews.llvm.org/D17292
llvm-svn: 261082
AVX1 doesn't support the shuffling of 256-bit integer vectors. For 32/64-bit elements we get around this by shuffling as float/double but for 8/16-bit elements (assuming they can't widen) we currently just split, shuffle as 128-bit vectors and concatenate the results back.
This patch adds the ability to lower using the bit-mask patterns before defaulting to the splitting behaviour. In some cases this ends up matching what AVX2 would do anyhow or what AVX1 does on the split vectors.
Part 1 of 2
Differential Revision: http://reviews.llvm.org/D17292
llvm-svn: 261081
Avoid reuse of operand variables, keep them local to a particular lowering - the operand collection is unique to each case anyhow.
Renamed from V to Ops to more closely match their purpose.
llvm-svn: 261078
__chkstk clobbers EAX. If EAX is live across the prologue, then we have
to take extra steps to save it. We already had code to do this if EAX
was a register parameter. This change adapts it to work when shrink
wrapping is used.
llvm-svn: 261039
Currently, we sometimes miscompile this vector pattern:
(c ? -v : v)
We lower it to (because "c" is <4 x i1>, lowered as a vector mask):
(~c & v) | (c & -v)
When we have SSSE3, we incorrectly lower that to PSIGN, which does:
(c < 0 ? -v : c > 0 ? v : 0)
in other words, when c is either all-ones or all-zero:
(c ? -v : 0)
While this is an old bug, it rarely triggers because the PSIGN combine
is too sensitive to operand order. This will be improved separately.
Note that the PSIGN tests are also incorrect. Consider:
%b.lobit = ashr <4 x i32> %b, <i32 31, i32 31, i32 31, i32 31>
%sub = sub nsw <4 x i32> zeroinitializer, %a
%0 = xor <4 x i32> %b.lobit, <i32 -1, i32 -1, i32 -1, i32 -1>
%1 = and <4 x i32> %a, %0
%2 = and <4 x i32> %b.lobit, %sub
%cond = or <4 x i32> %1, %2
ret <4 x i32> %cond
if %b is zero:
%b.lobit = <4 x i32> zeroinitializer
%sub = sub nsw <4 x i32> zeroinitializer, %a
%0 = <4 x i32> <i32 -1, i32 -1, i32 -1, i32 -1>
%1 = <4 x i32> %a
%2 = <4 x i32> zeroinitializer
%cond = or <4 x i32> %a, zeroinitializer
ret <4 x i32> %a
whereas we currently generate:
psignd %xmm1, %xmm0
retq
which returns 0, as %xmm1 is 0.
Instead, use a pure logic sequence, as described in:
https://graphics.stanford.edu/~seander/bithacks.html#ConditionalNegate
Fixes PR26110.
Differential Revision: http://reviews.llvm.org/D17181
llvm-svn: 261023
If KMOVB not supported (require AVX512DQ) only KMOVW can be used so store size should be 2 bytes.
Differential Revision: http://reviews.llvm.org/D17138
llvm-svn: 260878
This patch attempts to represent a shuffle as a repeating shuffle (recognisable by is128BitLaneRepeatedShuffleMask) with the source input(s) in their original lanes, followed by a single permutation of the 128-bit lanes to their final destinations.
On AVX2 we can additionally attempt to match using 64-bit sub-lane permutation. AVX2 can also now match a similar 'broadcasted' repeating shuffle.
This patch has several benefits:
* Avoids prematurely matching with lowerVectorShuffleByMerging128BitLanes which can require both inputs to have their input lanes permuted before shuffling.
* Can replace PERMPS/PERMD instructions - although these are useful for cross-lane unary shuffling, they require their shuffle mask to be pre-loaded (and increase register pressure).
* Matching the repeating shuffle makes use of a lot of existing shuffle lowering.
There is an outstanding minor AVX1 regression (combine_unneeded_subvector1 in vector-shuffle-combining.ll) of a previously 128-bit shuffle + subvector splat being converted to a subvector splat + (2 instruction) 256-bit shuffle, I intend to fix this in a followup patch for review.
Differential Revision: http://reviews.llvm.org/D16537
llvm-svn: 260834
As shown in:
https://llvm.org/bugs/show_bug.cgi?id=23203
...we currently die because lowering believes that mfence is allowed without SSE2 on x86-64,
but the instruction def doesn't know that.
I don't know if allowing mfence without SSE is right, but if not, at least now it's consistently wrong. :)
Differential Revision: http://reviews.llvm.org/D17219
llvm-svn: 260828
Summary:
Refactor common value, scope, and label tracking logic out of DwarfDebug
into a common base class called DebugHandlerBase.
Update an old LLVM IR test case to avoid an assertion in LexicalScopes.
Reviewers: dblaikie, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16931
llvm-svn: 260432
I reinvented this functionality in http://reviews.llvm.org/D16828 because it was
hidden away as a static function. The changes in x86 are not based on a complete
audit. I suspect there are other possible uses there, and there are almost certainly
more potential users in other targets.
llvm-svn: 260295
As mentioned in http://reviews.llvm.org/D16828 , the related masked load transform
will need this logic, so I'm moving it out to make that patch smaller.
llvm-svn: 260240
On AVX2 target we are poorly legalizing SIGN_EXTEND ops for which the input's legalized type doesn't have the same number of elements as the destination, resulting in an ANY_EXTEND followed by a SIGN_EXTEND_INREG.
This patch uses the existing SIGN_EXTEND -> SIGN_EXTEND_VECTOR_INREG combine to extend the input to the size of the result and using SIGN_EXTEND_VECTOR_INREG instead.
Differential Revision: http://reviews.llvm.org/D16994
llvm-svn: 260210
As discussed on PR26491, this patch adds support for lowering v4f32 shuffles to the MOVLHPS/MOVHLPS instructions. It also adds support for memory folding with their MOVLPS/MOVHPS load equivalents.
This first patch only really helps SSE1 targets as SSE2+ targets will widen the shuffle mask and use v2f64 equivalents (although they still combine to MOVLHPS/MOVHLPS for v2f64 splats). This will have to be addressed in a future patch, most likely when we add support for binary target shuffle combines.
Differential Revision: http://reviews.llvm.org/D16956
llvm-svn: 260168
Another opportunity to reduce masked stores: in D16691, we decided not to attempt the 'one mask element is set'
transform in InstCombine, but this should be a win for any AVX machine.
Code comments note that this transform could be extended for other targets / cases.
Differential Revision: http://reviews.llvm.org/D16828
llvm-svn: 260145
This matches GCC and MSVC's behaviour, and saves on code size.
We were already not extending i1 return values on x86_64 after r127766. This
takes that patch further by applying it to x86 target as well, and also for i8
and i16.
The ABI docs have been unclear about the required behaviour here. The new i386
psABI [1] clearly states (Table 2.4, page 14) that i1, i8, and i16 return
vales do not need to be extended beyond 8 bits. The x86_64 ABI doc is being
updated to say the same [2].
Differential Revision: http://reviews.llvm.org/D16907
[1]. https://01.org/sites/default/files/file_attach/intel386-psabi-1.0.pdf
[2]. https://groups.google.com/d/msg/x86-64-abi/E8O33onbnGQ/_RFWw_ixDQAJ
llvm-svn: 260133
The combineX86ShufflesRecursively only supports unary shuffles, but was missing the opportunity to combine binary shuffles with a zero / undef second input.
This patch resolves target shuffle inputs, converting the shuffle mask elements to SM_SentinelUndef/SM_SentinelZero where possible. It then resolves the updated mask to check if we have created a faux unary shuffle.
Additionally, we now attempt to recursively call combineX86ShufflesRecursively for all input operands (we used to just recurse for unary integer shuffles and unary unpacks) - it safely returns early if its not a target shuffle.
Differential Revision: http://reviews.llvm.org/D16683
llvm-svn: 260063
Pulled out the code used by PSHUFB/VPERMV/VPERMV3 shuffle mask decoding into common helper functions.
The helper functions handle masks coming from BROADCAST/BUILD_VECTOR and ConstantPool nodes respectively.
llvm-svn: 260032
First step towards being able to decode AVX512 PMOVZX instructions without a massive bloat in the shuffle decode switch statement.
This should also make it easier to decode X86ISD::VZEXT target shuffles in the future.
llvm-svn: 259995
Choose between MOVD/MOVSS and MOVQ/MOVSD depending on the target vector type.
This has a lot fewer test changes than trying to add this to X86InstrInfo::setExecutionDomain.....
llvm-svn: 259816
This patch adds support for consecutive (load/undef elements) 32-bit loads, followed by trailing undef/zero elements to be combined to a single MOVD load.
Differential Revision: http://reviews.llvm.org/D16729
llvm-svn: 259796