Summary: And define them to have noop casts with address spaces 0-255.
Reviewers: pekka.jaaskelainen
Subscribers: pekka.jaaskelainen, llvm-commits
Differential Revision: http://reviews.llvm.org/D12678
llvm-svn: 246990
SelectT2ShifterOperandReg has identical behaviour to SelectImmShifterOperand,
so get rid of it and use SelectImmShifterOperand instead.
Differential Revision: http://reviews.llvm.org/D12195
llvm-svn: 246962
To commute a trivial rlwimi instructions (meaning one with a full mask and zero
shift), we'd need to ability to form an all-zero mask (instead of an all-one
mask) using rlwimi. We can't represent this, however, and we'll miscompile code
if we try.
The code quality problem that this highlights (that SDAG simplification can
lead to us generating an ISD::OR node with a constant zero LHS) will be fixed
as a follow-up.
Fixes PR24719.
llvm-svn: 246937
PPCISelDAGToDAG has a transformation that generates a rlwimi instruction from
an input pattern that looks like this:
and(or(x, c1), c2)
but the associated logic does not work if there are bits that are 1 in c1 but 0
in c2 (these are normally canonicalized away, but that can't happen if the 'or'
has other users. Make sure we abort the transformation if such bits are
discovered.
Fixes PR24704.
llvm-svn: 246900
This adds a basic cost model for interleaved-access vectorization (and a better
default for shuffles), and enables interleaved-access vectorization by default.
The relevant difference from the default cost model for interleaved-access
vectorization, is that on PPC, the shuffles that end up being used are *much*
cheaper than modeling the process with insert/extract pairs (which are
quite expensive, especially on older cores).
llvm-svn: 246824
On the A2, with an eye toward QPX unaligned-load merging, we should always use
aggressive interleaving. It is generally superior to only using concatenation
unrolling.
llvm-svn: 246819
When forming permutation-based unaligned vector loads, we need to know whether
it is valid to read ahead of the requested address by a full vector length.
Doing so is more efficient (and allows for more CSE with later loads), but
could trigger a page fault if invalid. To determine validity, we look for other
loads in the same block that access the relevant address range.
The relevant point here is that we need to do this as part of the process of
forming permutation-based vector loads, and this happens quite early in the
SDAG pipeline - specifically before many of the address calculations are fully
canonicalized. As a result, we need to try harder to recognize base+offset
address computations, because they still might appear as chain of adds
(base+offset+offset, for example). To account for this, we'll look through
chains of adds, accumulating the constant offsets.
llvm-svn: 246813
Pre-P8, when we generate code for unaligned vector loads (for Altivec and QPX
types), even when accounting for the combining that takes place for multiple
consecutive such loads, there is at least one load instructions and one
permutation for each load. Make sure the cost reported reflects the cost of the
permutes as well.
llvm-svn: 246807
If you compute the MMO offset using unsigned arithmetic, you end up with a
large positive offset instead of a small negative one. In theory, this could
cause bad instruction-scheduling decisions later.
I noticed this by inspection from the debug output, and using that for the
regression test is the best I can do right now.
llvm-svn: 246805
This prevents MC clients from getting COFF.h, which conflicts with
winnt.h macros. Also a minor IWYU cleanup. Now the only public headers
including COFF.h are in Object, and they actually need it.
llvm-svn: 246784
Use and check the 'IsFast' optional parameter to TLI.allowsMemoryAccess() any time
we have a merged access candidate. Without this patch, we were generating unaligned
16-byte (SSE) memops for x86 targets where those accesses are slow.
This change was mentioned in:
http://reviews.llvm.org/D10662 and
http://reviews.llvm.org/D10905
and will help solve PR21711.
Differential Revision: http://reviews.llvm.org/D12573
llvm-svn: 246771
This patch allows the mixing of scaled and unscaled load/stores to form
load/store pairs.
PR24465
http://reviews.llvm.org/D12116
Many thanks to Ahmed and Michael for fixes and code review.
llvm-svn: 246769
We used to accept (and even test, and generate) 16-byte alignment
for 32-byte nontemporal stores, but they require 32-byte alignment,
per SDM. Found by inspection.
Instead of hardcoding 16 in the patfrag, check for natural alignment.
Also fix the autoupgrade and the various tests.
Also, use explicit -mattr instead of -mcpu: I stared at the output
several minutes wondering why I get 2x movntps for the unaligned
case (which is the ideal output, but needs some work: see FIXME),
until I remembered corei7-avx implies +slow-unaligned-mem-32.
llvm-svn: 246733
We can chain other fragments to avoid repeating conditions.
This also fixes a potential bug (that realistically can't happen),
where we would match indexed nontemporal stores for i32/i64.
llvm-svn: 246719
I'm adding a regression test to better cover code generation for unaligned
vector loads and stores, but there's no functional change to the code
generation here. There is an improvement to the cost model for unaligned vector
loads and stores, mostly for QPX (for which we were not previously accounting
for the permutation-based loads), and the cost model implementation is cleaner.
llvm-svn: 246712
Some of the instructions use ' ', which drives OCD-me nuts.
Let's put an end to this.
NFC-ish: hopefully nobody cares about whitespace.
llvm-svn: 246686
LowerVECTOR_SHUFFLE needs to decide whether to pass a vector shuffle off to the
TableGen-generated matching code, and it does this by testing the same
predicates used by the TableGen files. Unfortunately, when we added new
P8Altivec-only predicates, we started universally testing them in
LowerVECTOR_SHUFFLE, and if then matched when targeting a system prior to a P8,
we'd end up with a selection failure.
llvm-svn: 246675
This is a continuation of the fix from:
http://reviews.llvm.org/D10662
and discussion in:
http://reviews.llvm.org/D12154
Here, we distinguish slow unaligned SSE (128-bit) accesses from slow unaligned
scalar (64-bit and under) accesses. Other lowering (eg, getOptimalMemOpType)
assumes that unaligned scalar accesses are always ok, so this changes
allowsMisalignedMemoryAccesses() to match that behavior.
Differential Revision: http://reviews.llvm.org/D12543
llvm-svn: 246658
The code introduced in r244314 assumed that EXTRACT_VECTOR_ELT only
takes constant indices, but it does accept variables.
Bail out for those: we can't use them, as the shuffles we want to
reconstruct do require constant masks.
llvm-svn: 246594
This matches the ARM behavior. In both cases, the register is part
of the optional Performance Monitors extension, so, add the feature,
and enable it for the A-class processors we support.
Differential Revision: http://reviews.llvm.org/D12425
llvm-svn: 246555
Summary:
This change turns on by default interleaved access vectorization
for AArch64.
We also clean up some tests which were spedifically enabling this
behaviour.
Reviewers: rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D12149
llvm-svn: 246542
Summary:
This change turns on by default interleaved access vectorization on ARM,
as it has shown to be beneficial on ARM.
Reviewers: rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D12146
llvm-svn: 246541
Summary: This handles all load/store operations that WebAssembly defines, and handles those necessary for C++ such as i1. I left a FIXME for outstanding features which aren't required for now.
Reviewers: sunfish
Subscribers: jfb, llvm-commits, dschuff
llvm-svn: 246500
Also delete and simplify a lot of MachineModuleInfo code that used to be
needed to handle personalities on landingpads. Now that the personality
is on the LLVM Function, we no longer need to track it this way on MMI.
Certainly it should not live on LandingPadInfo.
llvm-svn: 246478
The ISelLowering code turned insertion turned the element for the
lowest lane of a BUILD_VECTOR into an INSERT_SUBREG, this prohibited
the patterns for SCALAR_TO_VECTOR(Load) to match later. Restrict this
to cases without a load argument.
Reported in rdar://22223823
Differential Revision: http://reviews.llvm.org/D12467
llvm-svn: 246462
X86FastISel has been using the wrong register class for VBLENDVPS which
produces a VR128 and needs an extra copy to the target register. The
problem was already hit by the existing test cases when using
> llvm-lit -Dllc="llc -verify-machineinstr"
llvm-svn: 246461
There were really two problems here. The first was that we had the truth tables
for signed i1 comparisons backward. I imagine these are not very common, but if
you have:
setcc i1 x, y, LT
this has the '0 1' and the '1 0' results flipped compared to:
setcc i1 x, y, ULT
because, in the signed case, '1 0' is really '-1 0', and the answer is not the
same as in the unsigned case.
The second problem was that we did not have patterns (at all) for the unsigned
comparisons select_cc nodes for i1 comparison operands. This was the specific
cause of PR24552. These had to be added (and a missing Altivec promotion added
as well) to make sure these function for all types. I've added a bunch more
test cases for these patterns, and there are a few FIXMEs in the test case
regarding code-quality.
Fixes PR24552.
llvm-svn: 246400
Add support for MIR serialization of PowerPC-specific operand target flags
(based on the generic infrastructure added in r244185 and r245383).
I won't even pretend that this is good test coverage, but this includes the
regression test associated with r246372. Adding an MIR test for that fix is far
superior to adding an IR-level test because particular instruction-scheduling
decisions are necessary in order to expose the bug, and using an MIR test we
can start the pipeline post-scheduling.
llvm-svn: 246373
Even through ADDISdtprelHA generally has r3 as its source register, it is
possible for the instruction scheduler to move things around such that some
other register is the source. We need to print the actual source register, not
always r3. Fixes PR24394.
The test case will come in a follow-up commit because it depends on MIR
target-flags parsing.
llvm-svn: 246372
This is especially visible in softfp mode, for example in the implementation of libm fabs/fneg functions. If we have:
%1 = vmovdrr r0, r1
%2 = fabs %1
then move the fabs before the vmovdrr:
%1 = and r1, #0x7FFFFFFF
%2 = vmovdrr r0, r1
This is never a lose, and could be a serious win because the vmovdrr may be followed by a vmovrrd, which would enable us to remove the conversion into FPRs completely.
We already do this for f32, but not for f64. Tests are added for both.
llvm-svn: 246360
The VOP3 encoding of these allows any SGPR pair for the i1
output, but this was forced before to always use vcc.
This doesn't yet try to use this, but does add the operand
to the definitions so the main change is adding vcc to the
output of the VOP2 encoding.
llvm-svn: 246358
Without a memory operand, mayLoad or mayStore instructions
are treated as hasUnorderedMemRef, which results in much worse
scheduling.
We really should have a verifier check that any
non-side effecting mayLoad or mayStore has a memory operand.
There are a few instructions (interp and images) which I'm
not sure what / where to add these.
llvm-svn: 246356
Summary:
We were assuming tha if the use operand had a sub-register that
the immediate was 64-bits, but this was breaking the case of
folding a 64-bit immediate into another 64-bit instruction.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D12255
llvm-svn: 246354
This has been causing the prologue_end to be incorrectly positioned.
Patch by Vladimir Radosavljevic.
Differential Revision: http://reviews.llvm.org/D11293
llvm-svn: 246309
For targets that didn't support this, this will let us respect the
langref instead of failing to select.
Note that we don't need to change the 32-bit x86/PPC lowerings (to
account for the result type/# difference) because they're both
custom and bypass type legalization.
llvm-svn: 246258
more than 2 instructions.
I introduced this regression a while back and did not noticed it because I
somehow forgot to push the initial test cases for the pass!
Fix that as well!
llvm-svn: 246239
We can now run 32-bit programs with empty catch bodies. The next step
is to change PEI so that we get funclet prologues and epilogues.
llvm-svn: 246235
Summary:
Let NVPTX backend detect integer min and max patterns during isel and emit intrinsics that enable hardware support.
Reviewers: jholewinski, meheff, jingyue
Subscribers: arsenm, llvm-commits, meheff, jingyue, eliben, jholewinski
Differential Revision: http://reviews.llvm.org/D12377
llvm-svn: 246107
Previously in isProfitableToIfCvt() in ARMBaseInstrInfo.cpp, the multiplication between an integer and a branch probability is done manually in an unsafe way that may lead to overflow. This patch corrects those cases by using BranchProbability's member function scale() to avoid overflow (which stores the intermediate result in int64).
Differential Revision: http://reviews.llvm.org/D12295
llvm-svn: 246106
Things of note:
- Other linkage types aren't handled yet. We'll figure it out with dynamic linking.
- Special LLVM globals are either ignored, or error out for now.
- TLS isn't supported yet (WebAssembly will have threads later).
- There currently isn't a syntax for alignment, I left it in a comment so it's easy to hook up.
- Undef is convereted to whatever the type's appropriate null value is.
- assert versus report_fatal_error: follow what other AsmPrinters do, and assert only on what should have been caught elsewhere.
llvm-svn: 246092
A corresponding clang change will make it so that clang can consume part
of an assembler token. The assembler treats '.' as an identifier
character while clang does not, so it's view of the token stream is a
little different.
llvm-svn: 246089
We removed access to the DataLayout on the TargetMachine and
deprecated the C API function LLVMGetTargetMachineData() in r243114.
However the way I tried to be backward compatible was broken: I
changed the wrapper of the TargetMachine to be a structure that
includes the DataLayout as well. However the TargetMachine is also
wrapped by the ExecutionEngine, in the more classic way. A client
using the TargetMachine wrapped by the ExecutionEngine and trying
to get the DataLayout would break.
It seems tricky to solve the problem completely in the C API
implementation. This patch tries to address this backward
compatibility in a more lighter way in the C++ API. The C API is
restored in its original state and the removed C++ API is
reintroduced, but privately. The C API is friended to the
TargetMachine and should be the only consumer for this API.
Reviewers: ributzka
Differential Revision: http://reviews.llvm.org/D12263
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 246082
There is no context where s_mov_b64 is emitted
and could potentially be moved to the VALU.
It is currently only emitted for materializing
immediates, which can't be dependent on vector sources.
The immediate splitting is already done when selecting
constants. I'm not sure what contexts if any the register
splitting would have been used before.
Also clean up using s_mov_b64 in place of v_mov_b64_pseudo,
although this isn't required and just skips the extra step
of eliminating the copy from the SReg_64.
llvm-svn: 246080
When splitting 64-bit operations, create the correct
VALU instructions immediately.
This was splitting things like s_or_b64 into the two
s_or_b32s and then pushing the new instructions
onto the worklist. There's no reason we need
to do this intermediate step.
llvm-svn: 246077
This takes the existing static function hasLiveCondCodeDef and makes it a member function of the X86InstrInfo class. This is a useful utility function that an upcoming change would like to use. NFC.
Patch by: Kevin B. Smith
Differential Revision: http://reviews.llvm.org/D12371
llvm-svn: 246073
We removed access to the DataLayout on the TargetMachine and
deprecated the C API function LLVMGetTargetMachineData() in r243114.
However the way I tried to be backward compatible was broken: I
changed the wrapper of the TargetMachine to be a structure that
includes the DataLayout as well. However the TargetMachine is also
wrapped by the ExecutionEngine, in the more classic way. A client
using the TargetMachine wrapped by the ExecutionEngine and trying
to get the DataLayout would break.
It seems tricky to solve the problem completely in the C API
implementation. This patch tries to address this backward
compatibility in a more lighter way in the C++ API. The C API is
restored in its original state and the removed C++ API is
reintroduced, but privately. The C API is friended to the
TargetMachine and should be the only consumer for this API.
Reviewers: ributzka
Differential Revision: http://reviews.llvm.org/D12263
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 246052
We removed access to the DataLayout on the TargetMachine and
deprecated the C API function LLVMGetTargetMachineData() in r243114.
However the way I tried to be backward compatible was broken: I
changed the wrapper of the TargetMachine to be a structure that
includes the DataLayout as well. However the TargetMachine is also
wrapped by the ExecutionEngine, in the more classic way. A client
using the TargetMachine wrapped by the ExecutionEngine and trying
to get the DataLayout would break.
It seems tricky to solve the problem completely in the C API
implementation. This patch tries to address this backward
compatibility in a more lighter way in the C++ API. The C API is
restored in its original state and the removed C++ API is
reintroduced, but privately. The C API is friended to the
TargetMachine and should be the only consumer for this API.
Reviewers: ributzka
Differential Revision: http://reviews.llvm.org/D12263
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 246044
If you're going to realign %sp to get object alignment properly (which
the code does), and stack offsets and alignments are calculated going
down from %fp (which they are), then the total stack size had better
be a multiple of the alignment. LLVM did indeed ensure that.
And then, after aligning, the sparc frame code added 96 (for sparcv8)
to the frame size, making any requested alignment of 64-bytes or
higher *guaranteed* to be misaligned. The test case added with r245668
even tests this exact scenario, and asserted the incorrect behavior,
which I somehow failed to notice. D'oh.
This change fixes the frame lowering code to align the stack size
*after* adding the spill area, instead.
Differential Revision: http://reviews.llvm.org/D12349
llvm-svn: 246042