For bit patterns that aren't representable using the 8-bit floating point
representation for vmov.f32, but are representable via vmov.i32, treat
the .f32 syntax as an alias. Most importantly, this covers the case
'vmov.f32 Vd, #0.0'.
rdar://10616677
llvm-svn: 148556
(This time I believe I've checked all the -Wreturn-type warnings from GCC & added the couple of llvm_unreachables necessary to silence them. If I've missed any, I'll happily fix them as soon as I know about them)
llvm-svn: 148262
If anybody has strong feelings about 'default: assert(0 && "blah")' vs
'default: llvm_unreachable("blah")', feel free to regularize the instances of
each in this file.
llvm-svn: 147459
Rather than require the symbol to be explicitly an argument of the directive,
allow it to look ahead and grab the symbol from the next non-whitespace
line.
rdar://10611140
llvm-svn: 147100
"mov r1, r2, lsl #0" should assemble as "mov r1, r2" even though it's
not strictly legal UAL syntax. It's a common extension and the friendly
thing to do.
rdar://10604663
llvm-svn: 146937
Backwards compatibility with 'gas'. #imm is the preferered and documented
syntax, but lots of existing code uses the '$' prefix, so we should
support it if we can.
llvm-svn: 146285
For example,
vld1.f64 {d2-d5}, [r2,:128]!
Should be equivalent to:
vld1.f64 {d2,d3,d4,d5}, [r2,:128]!
It's not documented syntax in the ARM ARM, but it is consistent with what's
accepted for VLDM/VSTM and is unambiguous in meaning, so it's a good thing to
support.
rdar://10451128
llvm-svn: 144727
When the 3rd operand is not a low-register, and the first two operands are
the same low register, the parser was incorrectly trying to use the 16-bit
instruction encoding.
rdar://10449281
llvm-svn: 144679
It's ignored by the assembler when present, but is legal syntax. Other
instructions have something similar, but for some mnemonics it's
only sometimes not significant, so this quick check in the parser will
need refactored into something more robust soon-ish. This gets some
basics working in the meantime.
Partial for rdar://10435264
llvm-svn: 144422
Get the source register that isn't tied to the destination register correct,
even when the assembly source operand order is backwards.
rdar://10428630
llvm-svn: 144322
Use the getIdentifier() method of the token, not getString(), otherwise
we keep the quotes as part of the symbol name, which we don't want.
rdar://10428015
llvm-svn: 144315
We were parsing label references to the i12 encoding, which isn't right.
They need to go to the pci variant instead.
More of rdar://10348687
llvm-svn: 143068
Next step in the ongoing saga of NEON load/store assmebly parsing. Handle
VLD1 instructions that take a two-register register list.
Adjust the instruction definitions to only have the single encoded register
as an operand. The super-register from the pseudo is kept as an implicit def,
so passes which come after pseudo-expansion still know that the instruction
defines the other subregs.
llvm-svn: 142670
NEON immediates are "interesting". Start of the work to handle parsing them
in an 'as' compatible manner. Getting the matcher to play nicely with
these and the floating point immediates from VFP is an extra fun wrinkle.
llvm-svn: 142293
Fill out the rest of the encoding information, update to properly mark
the LDC/STC instructions as predicable while the LDC2/STC2 instructions are
not, and adjust the parser accordingly.
llvm-svn: 141721
Consider:
mov r8, r11 fred
Previously, we issued the not very informative:
x.s:6:1: error: unexpected token in argument list
^
Now we generate:
x.s:5:14: error: unexpected token in argument list
mov r8, r11 fred
^
llvm-svn: 141380
Build on previous patches to successfully distinguish between an M-series and A/R-series MSR and MRS instruction. These take different mask names and have a *slightly* different opcode format.
Add decoder and disassembler tests.
Improvement on the previous patch - successfully distinguish between valid v6m and v7m masks (one is a subset of the other). The patch had to be edited slightly to apply to ToT.
llvm-svn: 140696
Clean up register list handling in general a bit to explicitly check things
like all the registers being from the same register class.
rdar://8883573
llvm-svn: 139707
The immediate offset of the non-writeback i8 form (encoding T4) allows
negative offsets only. The positive offset form of the encoding is the
LDRT instruction. Immediate offsets in the range [0,255] use encoding T3
instead.
llvm-svn: 139254
Choose 32-bit vs. 16-bit encoding when there's no .w suffix in post-processing
as match classes are insufficient to handle the context-sensitiveness of
the writeback operand's legality for the 16-bit encodings.
llvm-svn: 139242
Even if there's no mode switch performed, the .code directive should still
be sent to the output streamer. Otherwise, for example, an output asm stream
is not equivalent to the input stream which generated it (a dependency on
the input target triple arm vs. thumb is introduced which was not originally
there).
llvm-svn: 139155
When we want encoding T3 (the wide encoding), we can explicitly check for
that and twiddle the CanAcceptCarrySet accordingly. For now, just correctly
handle encodings T1 and T2 when in Thumb2 mode.
llvm-svn: 138879
When the destination register of an add immediate instruction is
explicitly specified, encoding T1 is preferred, else encoding T2 is
preferred.
llvm-svn: 138862
This handles only the handling of the IT instruction itself, not the
processing and validation of the instructions in the IT block. That's next,
and will include encoding tests for IT itself.
llvm-svn: 138665
Fix base register type and canonicallize to the "ldm" spelling rather than
"ldmia." Add diagnostics for incorrect writeback token and out-of-range
registers.
llvm-svn: 137986
Represent the operand value as it will be encoded in the instruction. This
allows removing the specialized encoder and decoder methods entirely. Add
an assembler match class while we're at it to lay groundwork for parsing the
thumb shift instructions.
llvm-svn: 137879
Thumb one requires that many arithmetic instruction forms have an 'S'
suffix. For Thumb2, the whether the suffix is required or precluded depends
on whether the instruction is in an IT block. Use target parser predicates
to check for these sorts of context-sensitive constraints.
llvm-svn: 137746
Allow a target assembly parser to do context sensitive constraint checking
on a potential instruction match. This will be used, for example, to handle
Thumb2 IT block parsing.
llvm-svn: 137675
More parsing support for indexed loads. Fix pre-indexed with writeback
parsing for register offsets and handle basic post-indexed offsets.
llvm-svn: 136982
Memory operand parsing is a bit haphazzard at the moment, in no small part
due to the even more haphazzard representations of memory operands in the .td
files. Start cleaning that all up, at least a bit.
The addressing modes in the .td files will be being simplified to not be
so monolithic, especially with regards to immediate vs. register offsets
and post-indexed addressing. addrmode3 is on its way with this patch, for
example.
This patch is foundational to enable going back to smaller incremental patches
for the individual memory referencing instructions themselves. It does just
enough to get the basics in place and handle the "make check" regression tests
we already have.
Follow-up work will be fleshing out the details and adding more robust test
cases for the individual instructions, starting with ARM mode and moving from
there into Thumb and Thumb2.
llvm-svn: 136845
Fix the instruction encoding for operands. Refactor mode to use explicit
instruction definitions per FIXME to be more consistent with loads/stores.
Fix disassembler accordingly. Add tests.
llvm-svn: 136509
Fill in the missing fixed bits and the register operand bits of the instruction
encoding. Refactor the definition to make the mode explicit, which is
consistent with how loads and stores are normally represented and makes
parsing much easier. Add parsing aliases for pseudo-instruction variants.
Update the disassembler for the new representations. Add tests for parsing and
encoding.
llvm-svn: 136479
specified in the same file that the library itself is created. This is
more idiomatic for CMake builds, and also allows us to correctly specify
dependencies that are missed due to bugs in the GenLibDeps perl script,
or change from compiler to compiler. On Linux, this returns CMake to
a place where it can relably rebuild several targets of LLVM.
I have tried not to change the dependencies from the ones in the current
auto-generated file. The only places I've really diverged are in places
where I was seeing link failures, and added a dependency. The goal of
this patch is not to start changing the dependencies, merely to move
them into the correct location, and an explicit form that we can control
and change when necessary.
This also removes a serialization point in the build because we don't
have to scan all the libraries before we begin building various tools.
We no longer have a step of the build that regenerates a file inside the
source tree. A few other associated cleanups fall out of this.
This isn't really finished yet though. After talking to dgregor he urged
switching to a single CMake macro to construct libraries with both
sources and dependencies in the arguments. Migrating from the two macros
to that style will be a follow-up patch.
Also, llvm-config is still generated with GenLibDeps.pl, which means it
still has slightly buggy dependencies. The internal CMake
'llvm-config-like' macro uses the correct explicitly specified
dependencies however. A future patch will switch llvm-config generation
(when using CMake) to be based on these deps as well.
This may well break Windows. I'm getting a machine set up now to dig
into any failures there. If anyone can chime in with problems they see
or ideas of how to solve them for Windows, much appreciated.
llvm-svn: 136433
Add parsing support for BLX (immediate). Since the register operand version is
predicated and the label operand version is not, we have to use some special
handling to get the operand list right for matching.
llvm-svn: 136406
Add parsing support that handles converting the lsb+width source into the
odd way we represent the instruction (an inverted bitfield mask).
llvm-svn: 136399
This can happen in cases where TableGen generated asm matcher cannot check
whether a register operand is in the right register class. e.g. mem operands.
rdar://8204588
llvm-svn: 136292
Encode the width operand as it encodes in the instruction, which simplifies
the disassembler and the encoder, by using the imm1_32 operand def. Add a
diagnostic for the context-sensitive constraint that the width must be in
the range [1,32-lsb].
llvm-svn: 136264
The first problem to fix is to stop creating synthetic *Table_gen
targets next to all of the LLVM libraries. These had no real effect as
CMake specifies that add_custom_command(OUTPUT ...) directives (what the
'tablegen(...)' stuff expands to) are implicitly added as dependencies
to all the rules in that CMakeLists.txt.
These synthetic rules started to cause problems as we started more and
more heavily using tablegen files from *subdirectories* of the one where
they were generated. Within those directories, the set of tablegen
outputs was still available and so these synthetic rules added them as
dependencies of those subdirectories. However, they were no longer
properly associated with the custom command to generate them. Most of
the time this "just worked" because something would get to the parent
directory first, and run tablegen there. Once run, the files existed and
the build proceeded happily. However, as more and more subdirectories
have started using this, the probability of this failing to happen has
increased. Recently with the MC refactorings, it became quite common for
me when touching a large enough number of targets.
To add insult to injury, several of the backends *tried* to fix this by
adding explicit dependencies back to the parent directory's tablegen
rules, but those dependencies didn't work as expected -- they weren't
forming a linear chain, they were adding another thread in the race.
This patch removes these synthetic rules completely, and adds a much
simpler function to declare explicitly that a collection of tablegen'ed
files are referenced by other libraries. From that, we can add explicit
dependencies from the smaller libraries (such as every architectures
Desc library) on this and correctly form a linear sequence. All of the
backends are updated to use it, sometimes replacing the existing attempt
at adding a dependency, sometimes adding a previously missing dependency
edge.
Please let me know if this causes any problems, but it fixes a rather
persistent and problematic source of build flakiness on our end.
llvm-svn: 136023
Fix the Rn register encoding for both SSAT and USAT. Update the parsing of the
shift operand to correctly handle the allowed shift types and immediate ranges
and issue meaningful diagnostics when an illegal value or shift type is
specified. Add aliases to parse an ommitted shift operand (default value of
'lsl #0').
Add tests for diagnostics and proper encoding.
llvm-svn: 135990
The immediate is in the range 1-32, but is encoded as 0-31 in a 5-bit bitfield.
Update the representation such that we store the operand as 0-31, allowing us
to remove the encoder method and the special case handling in the disassembler.
Update the assembly parser and the instruction printer accordingly.
llvm-svn: 135823
The system register spec should be case insensitive. The preferred form for
output with mask values of 4, 8, and 12 references APSR rather than CPSR.
Update and tidy up tests accordingly.
llvm-svn: 135532
Correct the handling of the 's' suffix when parsing ARM mode. It's only a
truly separate opcode in Thumb. Add test cases to make sure we handle
the s and condition suffices correctly, including diagnostics.
llvm-svn: 135513
Add range checking for the immediate operand and handle the "mov" mnemonic
choosing between encodings based on the value of the immediate. Add tests
for fixups, encoding choice and values, and diagnostic for out of range values.
llvm-svn: 135500
(including compilation, assembly). Move relocation model Reloc::Model from
TargetMachine to MCCodeGenInfo so it's accessible even without TargetMachine.
llvm-svn: 135468
Flesh out the options supported for the instruction. Shuffle tests a bit and
add entries for the rest of the options. Add an alias to handle the default
operand of "sy".
llvm-svn: 135109
Catch potential cascading errors on a malformed so_reg operand and bail after
the first error.
Add some tests for the diagnostics we do want.
llvm-svn: 135055
Now works for parsing register shifted register and register shifted
immediate arithmetic instructions, including the 'rrx' rotate with extend.
llvm-svn: 135049
Update the debug output interface for MCParsedAsmOperand to have a print()
method which takes an output stream argument, an << operator which invokes
the print method using the given stream, and a dump() method which prints
the operand to the dbgs() stream. This makes the interface more consistent
with the rest of LLVM, and more convenient to use at the debugger command
line.
llvm-svn: 135043
CPU, and feature string. Parsing some asm directives can change
subtarget state (e.g. .code 16) and it must be reflected in other
modules (e.g. MCCodeEmitter). That is, the MCSubtargetInfo instance
must be shared.
llvm-svn: 134795
- Each target asm parser now creates its own MCSubtatgetInfo (if needed).
- Changed AssemblerPredicate to take subtarget features which tablegen uses
to generate asm matcher subtarget feature queries. e.g.
"ModeThumb,FeatureThumb2" is translated to
"(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
llvm-svn: 134678
Fix a FIXME and allow predication (in Thumb2) for the T1 register to
register MOV instructions. This allows some better codegen with
if-conversion (as seen in the test updates), plus it lays the groundwork
for pseudo-izing the tMOVCC instructions.
llvm-svn: 134197
be the first encoded as the first feature. It then uses the CPU name to look up
features / scheduling itineray even though clients know full well the CPU name
being used to query these properties.
The fix is to just have the clients explictly pass the CPU name!
llvm-svn: 134127
Correctly parse the forms of the Thumb mov-immediate instruction:
1. 8-bit immediate 0-255.
2. 12-bit shifted-immediate.
The 16-bit immediate "movw" form is also legal with just a "mov" mnemonic,
but is not yet supported. More parser logic necessary there due to fixups.
llvm-svn: 133966
Thumb2 MOV mnemonic can accept both cc_out and predication. We don't (yet)
encode the instruction properly, but this gets the parsing part.
llvm-svn: 133945
("T is 1 if the target symbol S has type STT_FUNC and the
symbol addresses a Thumb instruction ;it is 0 otherwise."
from "ELF for the ARM Architecture" 4.7.1.2)
Patch by Koan-Sin Tan!
llvm-svn: 131406
also fix the encoding of the later.
- Add a new encoding bit to describe the index mode used in AM3.
- Teach printAddrMode3Operand to check by the addressing mode which
index mode to print.
- Testcases.
llvm-svn: 128832
all LDR/STR changes and left them to a future patch. Passing all
checks now.
- Implement asm parsing support for LDRT, LDRBT, STRT, STRBT and
fix the encoding wherever is possible.
- Add a new encoding bit to describe the index mode used and teach
printAddrMode2Operand to check by the addressing mode which index
mode to print.
- Testcases
llvm-svn: 128689
- Implement asm parsing support for LDRT, LDRBT, STRT, STRBT and
{STR,LDC}{2}_{PRE,POST} fixing the encoding wherever is possible.
- Move all instructions which use am2offset without a pattern to use
addrmode2.
- Add a new encoding bit to describe the index mode used and teach
printAddrMode2Operand to check by the addressing mode which index
mode to print.
- Testcases
llvm-svn: 128632
{STR,LDC}{2}_PRE.
- Fixed the encoding in some places.
- Some of those instructions were using am2offset and now use addrmode2.
Codegen isn't affected, instructions which use SelectAddrMode2Offset were not
touched.
- Teach printAddrMode2Operand to check by the addressing mode which index
mode to print.
- This is a work in progress, more work to come. The idea is to change places
which use am2offset to use addrmode2 instead, as to unify assembly parser.
- Add testcases for assembly parser
llvm-svn: 128585
- Add custom operand matching for imod and iflags.
- Rename SplitMnemonicAndCC to SplitMnemonic since it splits more than CC
from mnemonic.
- While adding ".w" as an operand, don't change "Head" to avoid passing the
wrong mnemonic to ParseOperand.
- Add asm parser tests.
- Add disassembler tests just to make sure it can catch all cps versions.
llvm-svn: 125489
Teach the AsmMatcher handling to distinguish between an error custom-parsing
an operand and a failure to match. The former should propogate the error
upwards, while the latter should continue attempting to parse with
alternative matchers.
Update the ARM asm parser accordingly.
llvm-svn: 125426
parsing of operands introduced in r125030. As a small note, besides using a more
generic approach we can also have more descriptive output when debugging
llvm-mc, example:
mcr p7, #1, r5, c1, c1, #4
note: parsed instruction:
['mcr', <ARMCC::al>,
<coprocessor number: 7>,
1,
<register 73>,
<coprocessor register: 1>,
<coprocessor register: 1>,
4]
llvm-svn: 125052
in cdp/cdp2 instructions. Also increase the hack with cdp/cdp2 instructions.
- Fix the encoding of cdp/cdp2 instructions for ARM (no thumb and thumb2 yet) and add testcases for t
hem.
llvm-svn: 123927
the symbolic immediate names used for these instructions, fixing their pretty-printers, and
adding proper encoding information for them.
With this, we can properly pretty-print and encode assembly like:
mrc p15, #0, r3, c13, c0, #3
Fixes <rdar://problem/8857858>.
llvm-svn: 123404
in the right direction. It eliminated some hacks and will unblock codegen
work. But it's far from being done. It doesn't reject illegal expressions,
e.g. (FOO - :lower16:BAR). It also doesn't work in Thumb2 mode at all.
llvm-svn: 123369
.code 32 if the TargetMachine's isThumb() boolean does not match. The correct
fix is to switch ARM subtargets at that point and is tracked by rdar://8856789
which is bigger task.
llvm-svn: 123353
carry setting flag from the mnemonic.
Note that this currently involves me disabling a number of working cases in
arm_instructions.s, this is a hopefully short term evil which will be rapidly
fixed (and greatly surpassed), assuming my current approach flies.
llvm-svn: 123238
instruction based on the t_addrmode_s# mode and what it returned. There is some
obvious badness to this. In particular, it's hard to do MC-encoding when the
instruction may change out from underneath you after the t_addrmode_s# variable
is finally resolved.
The solution is to revert a long-ago change that merged the reg/reg and reg/imm
versions. There is the addition of several new addressing modes. They no longer
have extraneous operands associated with them. I.e., if it's reg/reg we don't
have to have a dummy zero immediate tacked on to the SDNode.
There are some obvious cleanups here, which will happen shortly.
llvm-svn: 121747
the condition codes. Where the ones that do have an 's' suffix and the ones
that don't don't have the suffix. The trick is if MatchInstructionImpl() fails
we try again after adding a CCOut operand with the correct value and removing
the 's' if present. Four simple test cases added for now, lots more to come.
llvm-svn: 121401
t_addrmode_s4, but with a different scaling factor.
* Encode the Thumb1 load and store instructions. This involved a bit of
refactoring (hi, Chris! :-). Some of the patterns became dead afterwards and
were removed.
llvm-svn: 120482
instructions have to distinguish between lists of single- and double-precision
registers in order for the ASM matcher to do a proper job. In all other
respects, a list of single- or double-precision registers are the same as a list
of GPR registers.
llvm-svn: 119460
* LDM, et al, uses a bit mask to indicate the register list.
* VLDM, et al, uses a base register plus number.
The LDM instructions may be non-contiguous, but the VLDM ones must be
contiguous. Those are semantic checks that should be done later in the
compiler. Also postpone the creation of the bit mask until it's needed.
llvm-svn: 118640
the registers, because the register numbers may be much greater than the number
of bits available in the machine's register.
I extracted the register list verification code out of the actual parsing of the
registers. This made checking for errors much easier. It also limits the number
of warnings that would be emitted for cascading infractions.
llvm-svn: 118363
(surprise!) a list of registers. Register lists are consecutive, so we only need
to record the start register plus the number of registers.
llvm-svn: 118351