Summary:
The current LICM allows sinking an instruction only when it is exposed to exit
blocks through a trivially replacable PHI of which all incoming values are the
same instruction. This change enhance LICM to sink a sinkable instruction
through non-trivially replacable PHIs by spliting predecessors of loop
exits.
Reviewers: hfinkel, majnemer, davidxl, bmakam, mcrosier, danielcdh, efriedma, jtony
Reviewed By: efriedma
Subscribers: nemanjai, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D37163
llvm-svn: 317335
Generally, the ISEL is expanded into if-then-else sequence, in some
cases (like when the destination register is the same with the true
or false value register), it may just be expanded into just the if
or else sequence.
llvm-svn: 292154
Generally, the ISEL is expanded into if-then-else sequence, in some
cases (like when the destination register is the same with the true
or false value register), it may just be expanded into just the if
or else sequence.
llvm-svn: 292128
Currently we have a number of tests that fail with -verify-machineinstrs.
To detect this cases earlier we add the option to the testcases with the
exception of tests that will currently fail with this option. PR 27456 keeps
track of this failures.
No code review, as discussed with Hal Finkel.
llvm-svn: 277624
http://reviews.llvm.org/D18562
A large number of testcases has been modified so they pass after this test.
One testcase is deleted, because I realized even after undoing the original
change that was committed with this testcase, the testcase still passes. So
I removed it. The change to one other testcase (test/CodeGen/PowerPC/pr25802.ll)
is an arbitrary change to keep it passing. Given the original intention of the
testcase, and the fact that fixing it will require some time to change the testcase,
we concluded that this quick change will be enough.
llvm-svn: 265683
TableGen had been nicely generating code to print a number of instructions using
shorter aliases (and PowerPC has plenty of short mnemonics), but we were not
calling it. For some of the aliases we support in the parser, TableGen can't
infer the "inverse" alias relationship, so there is still more to do.
Thus, after some hours of updating test cases...
llvm-svn: 235616
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
GCC accepts 'cc' as an alias for 'cr0', and we need to do the same when
processing inline asm constraints. This had previously been implemented using a
non-allocatable register, named 'cc', that was listed as an alias of 'cr0', but
the infrastructure does not seem to support this properly (neither the register
allocator nor the scheduler properly accounts for the alias). Instead, we can
just process this as a naming alias inside of the inline asm
constraint-processing code, so we'll do that instead.
There are two regression tests, one where the post-RA scheduler did the wrong
thing with the non-allocatable alias, and one where the register allocator did
the wrong thing. Fixes PR21742.
llvm-svn: 223708