Allow an ilist_iterator to be constructed from an ilist_node, and give
access to the underlying ilist_node as well.
This will be used immediately in lld to support a type-erasure use case.
Longer term, they'll stick around once the iterator is using
ilist_node<NodeTy>* instead of NodeTy*.
llvm-svn: 278467
"insert_subreg, subreg_to_reg, and reg_sequence" instructions' after
adjusting some unittest checks.
This is to solve PR28852. The restriction was added at 2010 to make better register
coalescing. We assumed that it was not necessary any more. Testing results on x86
supported the assumption.
We will look closely to any performance impact it will bring and will be prepared
to help analyzing performance problem found on other architectures.
Differential Revision: https://reviews.llvm.org/D23210
llvm-svn: 278466
Summary: This is a follow up to r278389, where I have introduced the bug
Reviewers: mehdi_amini
Differential Revision: https://reviews.llvm.org/D23436
llvm-svn: 278442
Summary:
Notice that the data layout is changed: instead of using
std::pair<PointerIntPair<NodeType*, 1>, ChildItTy>, now use
std::pair<NodeRef, Optional<ChildItTy>>.
A NFC but worth noticing change is operator==(), since we only compare
an iterator against end(), it's better to put an assert there and make
people noticed when it fails.
Reviewers: dblaikie, chandlerc
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D23146
llvm-svn: 278437
Summary:
This patch adds IsVariadicFunction bit to summary in order
to not import variadic functions. Inliner doesn't inline
variadic functions because it is hard to reason about it.
This one small fix improves Importer by about 16%
(going from 86% to 100% of imported functions that are
inlined anywhere)
on some spec benchmarks like 'int' and others.
Reviewers: eraman, mehdi_amini, tejohnson
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D23339
llvm-svn: 278432
Summary:
This is an extension of the fix in r271424. That fix dealt with builder
insert points being moved by SCEV expansion, but only for the lifetime
of the expand call. This change modifies the interface so that LSR can
safely call expand multiple times at the same insert point and do the
right thing if one of the expansions decides to move the original insert
point.
This is a fix for PR28719.
Reviewers: sanjoy
Subscribers: llvm-commits, mcrosier, mzolotukhin
Differential Revision: https://reviews.llvm.org/D23342
llvm-svn: 278413
Summary: Make Optional's behavior the same as the coming std::optional.
Reviewers: dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23178
llvm-svn: 278397
Summary:
Keep track of all methods for which we have devirtualized at least
one call and then print them sorted alphabetically. That allows to
avoid duplicates and also makes the order deterministic.
Add optimization names into the remarks, so that it's easier to
understand how has each method been devirtualized.
Fix a bug when wrong methods could have been reported for
tryVirtualConstProp.
Reviewers: kcc, mehdi_amini
Differential Revision: https://reviews.llvm.org/D23297
llvm-svn: 278389
subreg_to_reg, and reg_sequence" instructions.
This is to solve PR28852. The restriction was added at 2010 to make better register
coalescing. We assumed that it was not necessary any more. Testing results on x86
supported the assumption.
We will look closely to any performance impact it will bring and will be prepared
to help analyzing performance problem found on other architectures.
Differential Revision: https://reviews.llvm.org/D23210
llvm-svn: 278384
This adds a createFunctionInliningPass pass that takes an InlineParams object and use this to create the pre-inliner pass. This prevents the regular inliner's threshold flag from influencing the preinliner.
Differential revision: https://reviews.llvm.org/D23377
llvm-svn: 278377
ExecutionEngine::runFunction is supposed to allow execution of arbitrary
function types, but MCJIT can only reasonably support a limited subset of
main-linke function types. This patch documents this limitation, and fixes
MCJIT::runFunction to abort with a meaningful error at runtime if called with
an unsupported function type.
llvm-svn: 278348
This restores commit r278330, with fixes for a few bot failures:
- Fix a late change I had made to the save temps output file that I
missed due to existing files sitting on my disk
- Fix a bunch of Windows bot failures with "ambiguous call to overloaded
function" due to confusion between llvm::make_unique vs
std::make_unique (preface the new make_unique calls with "llvm::")
- Attempt to fix a modules bot failure by adding a missing include
to LTO/Config.h.
Original change:
Resolution-based LTO API.
Summary:
This introduces a resolution-based LTO API. The main advantage of this API over
existing APIs is that it allows the linker to supply a resolution for each
symbol in each object, rather than the combined object as a whole. This will
become increasingly important for use cases such as ThinLTO which require us
to process symbol resolutions in a more complicated way than just adjusting
linkage.
Patch by Peter Collingbourne.
Reviewers: rafael, tejohnson, mehdi_amini
Subscribers: lhames, tejohnson, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D20268
llvm-svn: 278338
This reverts commit r278330.
I made a change to the save temps output that is causing issues with the
bots. Didn't realize this because I had older output files sitting on
disk in my test output directory.
llvm-svn: 278331
Summary:
This introduces a resolution-based LTO API. The main advantage of this API over
existing APIs is that it allows the linker to supply a resolution for each
symbol in each object, rather than the combined object as a whole. This will
become increasingly important for use cases such as ThinLTO which require us
to process symbol resolutions in a more complicated way than just adjusting
linkage.
Patch by Peter Collingbourne.
Reviewers: rafael, tejohnson, mehdi_amini
Subscribers: lhames, tejohnson, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D20268
Address review comments
llvm-svn: 278330
It's more than just inttoptr, but the others can't be tested until we have
support for non-trivial constants (they currently get unavoidably folded to a
ConstantInt).
llvm-svn: 278303
Summary:
This patch define and implement amdgcn image intrinsics with sampler.
1. define vdata type to be llvm_anyfloat_ty, address type to be llvm_anyfloat_ty,
and rsrc type to be llvm_anyint_ty. As a result, we expect the intrinsics name
to have three suffixes to overload each of these three types;
2. D128 as well as two other flags are implied in the three types, for example,
if you use v8i32 as resource type, then r128 is 0!
3. don't expose TFE flag, and other flags are exposed in the instruction order:
unrm, glc, slc, lwe and da.
Differential Revision: http://reviews.llvm.org/D22838
Reviewed by:
arsenm and tstellarAMD
llvm-svn: 278291
Summary:
I think it is much better this way.
When I firstly saw line:
Cost += InlineConstants::LastCallToStaticBonus;
I though that this is a bug, because everywhere where the cost is being reduced
it is usuing -=.
Reviewers: eraman, tejohnson, mehdi_amini
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D23222
llvm-svn: 278290
Summary: make_scope_exit() is described in C++ proposal p0052r2, which uses RAII to do cleanup works at scope exit.
Reviewers: chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D22796
llvm-svn: 278251
Summary:
A particular coroutine usage pattern, where a coroutine is created, manipulated and
destroyed by the same calling function, is common for coroutines implementing
RAII idiom and is suitable for allocation elision optimization which avoid
dynamic allocation by storing the coroutine frame as a static `alloca` in its
caller.
coro.free and coro.alloc intrinsics are used to indicate which code needs to be suppressed
when dynamic allocation elision happens:
```
entry:
%elide = call i8* @llvm.coro.alloc()
%need.dyn.alloc = icmp ne i8* %elide, null
br i1 %need.dyn.alloc, label %coro.begin, label %dyn.alloc
dyn.alloc:
%alloc = call i8* @CustomAlloc(i32 4)
br label %coro.begin
coro.begin:
%phi = phi i8* [ %elide, %entry ], [ %alloc, %dyn.alloc ]
%hdl = call i8* @llvm.coro.begin(i8* %phi, i32 0, i8* null,
i8* bitcast ([2 x void (%f.frame*)*]* @f.resumers to i8*))
```
and
```
%mem = call i8* @llvm.coro.free(i8* %hdl)
%need.dyn.free = icmp ne i8* %mem, null
br i1 %need.dyn.free, label %dyn.free, label %if.end
dyn.free:
call void @CustomFree(i8* %mem)
br label %if.end
if.end:
...
```
If heap allocation elision is performed, we replace coro.alloc with a static alloca on the caller frame and coro.free with null constant.
Also, we need to make sure that if there are any tail calls referencing the coroutine frame, we need to remote tail call attribute, since now coroutine frame lives on the stack.
Documentation and overview is here: http://llvm.org/docs/Coroutines.html.
Upstreaming sequence (rough plan)
1.Add documentation. (https://reviews.llvm.org/D22603)
2.Add coroutine intrinsics. (https://reviews.llvm.org/D22659)
3.Add empty coroutine passes. (https://reviews.llvm.org/D22847)
4.Add coroutine devirtualization + tests.
ab) Lower coro.resume and coro.destroy (https://reviews.llvm.org/D22998)
c) Do devirtualization (https://reviews.llvm.org/D23229)
5.Add CGSCC restart trigger + tests. (https://reviews.llvm.org/D23234)
6.Add coroutine heap elision + tests. <= we are here
7.Add the rest of the logic (split into more patches)
Reviewers: mehdi_amini, majnemer
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D23245
llvm-svn: 278242
This adds an InlineParams struct which is populated from the command line options by getInlineParams and passed to getInlineCost for the call analyzer to use.
Differential revision: https://reviews.llvm.org/D22120
llvm-svn: 278189
Summary:
The inliner not being a function pass requires the work-around of
generating the OptimizationRemarkEmitter and in turn BFI on demand.
This will go away after the new PM is ready.
BFI is only computed inside ORE if the user has requested hotness
information for optimization diagnostitics (-pass-remark-with-hotness at
the 'opt' level). Thus there is no additional overhead without the
flag.
Reviewers: hfinkel, davidxl, eraman
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D22694
llvm-svn: 278185
In case there are compilers that support neither __FUNCSIG__ or
__PRETTY_FUNCTION__, we fall back to __func__ as a last resort,
which should be guaranteed by C++11 and C99.
llvm-svn: 278176
MSVC doesn't have this, it only has __FUNCSIG__. So this adds
a new macro called LLVM_PRETTY_FUNCTION which evaluates to the
right thing on any platform.
llvm-svn: 278170
For now put them all in the entry block. This should be correct but may give
poor runtime performance. Hopefully MachineSinking combined with
isReMaterializable can solve those issues, but if not the interface is sound
enough to support alternatives.
llvm-svn: 278168
The patch is to fix the bug in PR28705. It was caused by setting wrong return
value for SCEVExpander::findExistingExpansion. The return values of findExistingExpansion
have different meanings when the function is used in different ways so it is easy to make
mistake. The fix creates two new interfaces to replace SCEVExpander::findExistingExpansion,
and specifies where each interface is expected to be used.
Differential Revision: https://reviews.llvm.org/D22942
llvm-svn: 278161
The fix for PR28705 will be committed consecutively.
In D12090, the ExprValueMap was added to reuse existing value during SCEV expansion.
However, const folding and sext/zext distribution can make the reuse still difficult.
A simplified case is: suppose we know S1 expands to V1 in ExprValueMap, and
S1 = S2 + C_a
S3 = S2 + C_b
where C_a and C_b are different SCEVConstants. Then we'd like to expand S3 as
V1 - C_a + C_b instead of expanding S2 literally. It is helpful when S2 is a
complex SCEV expr and S2 has no entry in ExprValueMap, which is usually caused
by the fact that S3 is generated from S1 after const folding.
In order to do that, we represent ExprValueMap as a mapping from SCEV to
ValueOffsetPair. We will save both S1->{V1, 0} and S2->{V1, C_a} into the
ExprValueMap when we create SCEV for V1. When S3 is expanded, it will first
expand S2 to V1 - C_a because of S2->{V1, C_a} in the map, then expand S3 to
V1 - C_a + C_b.
Differential Revision: https://reviews.llvm.org/D21313
llvm-svn: 278160
One exception here is LoopInfo which must forward-declare it (because
the typedef is in LoopPassManager.h which depends on LoopInfo).
Also, some includes for LoopPassManager.h were needed since that file
provides the typedef.
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278079
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278078
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278077
The DebugDirectory contains a pointer to the CodeView info structure which is a
derivative of the OMF debug directory. The structure has evolved a bit over
time, and PDB 2.0 used a slightly different definition from PDB 7.0. Both of
these are specific to CodeView and not COFF. Reflect this by moving the
structure definitions into the DebugInfo/CodeView headers. Define a generic
DebugInfo union type that can be used to pass around a reference to the
DebugInfo irrespective of the versioning. NFC.
llvm-svn: 278075
This reverts commit r278048. Something changed between the last time I
built this--it takes awhile on my ridiculously slow and ancient
computer--and now that broke this.
llvm-svn: 278053
Summary:
Based on two patches by Michael Mueller.
This is a target attribute that causes a function marked with it to be
emitted as "hotpatchable". This particular mechanism was originally
devised by Microsoft for patching their binaries (which they are
constantly updating to stay ahead of crackers, script kiddies, and other
ne'er-do-wells on the Internet), but is now commonly abused by Windows
programs to hook API functions.
This mechanism is target-specific. For x86, a two-byte no-op instruction
is emitted at the function's entry point; the entry point must be
immediately preceded by 64 (32-bit) or 128 (64-bit) bytes of padding.
This padding is where the patch code is written. The two byte no-op is
then overwritten with a short jump into this code. The no-op is usually
a `movl %edi, %edi` instruction; this is used as a magic value
indicating that this is a hotpatchable function.
Reviewers: majnemer, sanjoy, rnk
Subscribers: dberris, llvm-commits
Differential Revision: https://reviews.llvm.org/D19908
llvm-svn: 278048
Summary:
Ensure that the MemorySSA object never changes address when using the
new pass manager since the walkers contained by MemorySSA cache pointers
to it at construction time. This is achieved by wrapping the
MemorySSAAnalysis result in a unique_ptr. Also add some asserts that
check for this bug.
Reviewers: george.burgess.iv, dberlin
Subscribers: mcrosier, hfinkel, chandlerc, silvas, llvm-commits
Differential Revision: https://reviews.llvm.org/D23171
llvm-svn: 278028
This patch adds support for some new relocation models to the ARM
backend:
* Read-only position independence (ROPI): Code and read-only data is accessed
PC-relative. The offsets between all code and RO data sections are known at
static link time. This does not affect read-write data.
* Read-write position independence (RWPI): Read-write data is accessed relative
to the static base register (r9). The offsets between all writeable data
sections are known at static link time. This does not affect read-only data.
These two modes are independent (they specify how different objects
should be addressed), so they can be used individually or together. They
are otherwise the same as the "static" relocation model, and are not
compatible with SysV-style PIC using a global offset table.
These modes are normally used by bare-metal systems or systems with
small real-time operating systems. They are designed to avoid the need
for a dynamic linker, the only initialisation required is setting r9 to
an appropriate value for RWPI code.
I have only added support to SelectionDAG, not FastISel, because
FastISel is currently disabled for bare-metal targets where these modes
would be used.
Differential Revision: https://reviews.llvm.org/D23195
llvm-svn: 278015
For some reason, MSVC2013's cl.exe crashes with
fatal error C1001: An internal error has occurred in the compiler
with this when compiling e.g. LoopDistribute.cpp.
llvm-svn: 278011
Summary:
They are now lexed as a single token on targets where
MCAsmInfo::HasMipsExpressions is true and then parsed in a similar way to
the '~' operator as part of MCExpr::parseExpression.
As a result:
* expressions and immediates no longer have different parsing rules. The
difference is now solely down to whether evaluateAsAbsolute() succeeds.
* %hi(%neg(%gp_rel(x))) are no longer parsed as a single operator and
decomposed into the three MipsMCExpr nodes. They are parsed directly as
three MipsMCExpr nodes.
* parseMemOperand no longer needs to eat all the surrounding parenthesis
to get at the outermost operator to make this work
* %hi(%neg(%gp_rel(x))) and %lo(%neg(%gp_rel(x))) are no longer the only
3-in-1 relocs that parse for N64. They're still the only combinations that
are permitted in relocatable expressions though. Fixing that should be a
later patch.
* We no longer need to list all the tokens that can occur as the first token of
an expression or immediate.
test/MC/Mips/expr1.s:
This change also prevents the incorrect lowering of %lo(2*4)+foo to
%lo(8+foo) which is not an equivalent expression (the difference is
whether foo is truncated to 16-bit or not) and the test has been
updated to account for the macro expansion the correct expression requires.
Reviewers: sdardis
Subscribers: dsanders, sdardis, llvm-commits
Differential Revision: https://reviews.llvm.org/D23110
llvm-svn: 277988
Summary:
The correctness fix here is that when we CSE a load with another load,
we need to combine the metadata on the two loads. This matches the
behavior of other passes, like instcombine and GVN.
There's also a minor optimization improvement here: for load PRE, the
aliasing metadata on the inserted load should be the same as the
metadata on the original load. Not sure why the old code was throwing
it away.
Issue found by inspection.
Differential Revision: http://reviews.llvm.org/D21460
llvm-svn: 277977
Summary:
CoroSplit pass processes the coroutine twice. First, it lets it go through
complete IPO optimization pipeline as a single function. It forces restart
of the pipeline by inserting an indirect call to an empty function "coro.devirt.trigger"
which is devirtualized by CoroElide pass that triggers a restart of the pipeline by CGPassManager.
(In later patches, when CoroSplit pass sees the same coroutine the second time, it splits it up,
adds coroutine subfunctions to the SCC to be processed by IPO pipeline.)
Documentation and overview is here: http://llvm.org/docs/Coroutines.html.
Upstreaming sequence (rough plan)
1.Add documentation. (https://reviews.llvm.org/D22603)
2.Add coroutine intrinsics. (https://reviews.llvm.org/D22659)
3.Add empty coroutine passes. (https://reviews.llvm.org/D22847)
4.Add coroutine devirtualization + tests.
ab) Lower coro.resume and coro.destroy (https://reviews.llvm.org/D22998)
c) Do devirtualization (https://reviews.llvm.org/D23229)
5.Add CGSCC restart trigger + tests. <= we are here
6.Add coroutine heap elision + tests.
7.Add the rest of the logic (split into more patches)
Reviewers: mehdi_amini, majnemer
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D23234
llvm-svn: 277936
Summary:
This is the 4c patch of the coroutine series. CoroElide pass now checks if PostSplit coro.begin
is referenced by coro.subfn.addr intrinsics. If so replace coro.subfn.addrs with an appropriate coroutine
subfunction associated with that coro.begin.
Documentation and overview is here: http://llvm.org/docs/Coroutines.html.
Upstreaming sequence (rough plan)
1.Add documentation. (https://reviews.llvm.org/D22603)
2.Add coroutine intrinsics. (https://reviews.llvm.org/D22659)
3.Add empty coroutine passes. (https://reviews.llvm.org/D22847)
4.Add coroutine devirtualization + tests.
ab) Lower coro.resume and coro.destroy (https://reviews.llvm.org/D22998)
c) Do devirtualization <= we are here
5.Add CGSCC restart trigger + tests.
6.Add coroutine heap elision + tests.
7.Add the rest of the logic (split into more patches)
Reviewers: majnemer
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D23229
llvm-svn: 277908
It breaks ExecutionEngine/OrcLazy/weak-function.ll on most bots.
Script:
--
...
--
Exit Code: 1
Command Output (stderr):
--
Could not find main function.
llvm-svn: 277907
This adds partial support for weak functions to the CompileOnDemandLayer by
modifying the addLogicalModule method to check for existing stub definitions
before building a new stub for a weak function. This scheme is sufficient to
support ODR definitions, but fails for general weak definitions if strong
definition is encountered after the first weak definition. (A more extensive
refactor will be required to fully support weak symbols).
This patch does *not* add weak symbol support to RuntimeDyld: I hope to add
that in the near future.
llvm-svn: 277896
This resubmits a3770391c5fb64108d565e12f61dd77ce71b5b4f,
which was reverted due to breakages on non-Windows machines.
Due to differences in template instantiation rules on Microsoft
and non-Microsoft platforms, a member access restriction was
triggering on non-Microsoft compilers. Previously, a friend
declaration for std::vector<> had been introduced into the
DebugMap class to make the member access restriction pass,
but the introduction of support for SmallVector<> meant that
an additional friend declaration would need to be added.
This didn't really make a lot of sense since the user of the
macro is probably only using one type (SmallVector<>, vector<>,
etc) and we could in theory add support for even more types
to this macro in the future (e.g. std::deque), so rather than
add another friend declaration, I just made the type being
referenced a public nested typedef instead of a private nested
typedef.
llvm-svn: 277888
Until now, our use case for the visitor has been to take a stream of bytes
representing a type stream, deserialize the records in sequence, and do
something with them, where "something" is determined by how the user
implements a particular set of callbacks on an abstract class.
For actually writing PDBs, however, we want to do the reverse. We have
some kind of description of the list of records in their in-memory format,
and we want to process each one. Perhaps by serializing them to a byte
stream, or perhaps by converting them from one description format (Yaml)
to another (in-memory representation).
This was difficult in the current model because deserialization and
invoking the callbacks were tightly coupled.
With this patch we change this so that TypeDeserializer is itself an
implementation of the particular set of callbacks. This decouples
deserialization from the iteration over a list of records and invocation
of the callbacks. TypeDeserializer is initialized with another
implementation of the callback interface, so that upon deserialization it
can pass the deserialized record through to the next set of callbacks. In
a sense this is like an implementation of the Decorator design pattern,
where the Deserializer is a decorator.
This will be useful for writing Pdbs from yaml, where we have a
description of the type records in Yaml format. In this case, the visitor
implementation would have each visitation callback method implemented in
such a way as to extract the proper set of fields from the Yaml, and it
could maintain state that builds up a list of these records. Finally at
the end we can pass this information through to another set of callbacks
which serializes them into a byte stream.
Reviewed By: majnemer, ruiu, rnk
Differential Revision: https://reviews.llvm.org/D23177
llvm-svn: 277871
Currently YAML sequences require std::vectors. All of the methods that the
YAML parser accesses though are present in SmallVector, so there's no
reason we can't support SmallVector inherently. This patch does that.
Reviewed By: majnemer
Differential Revision: https://reviews.llvm.org/D23213
llvm-svn: 277870
The analysis manager was made not optional and turned into a
reference instead of a pointer in r272978. Some comments were
still refering to the previous behavior.
llvm-svn: 277857
This prevents handles from being invalidated (through iterator invalidation)
when new modules are added.
No test-case yet: This bug was uncovered during work on an upcoming patch for
weak symbol support and the testcase for that feature will implicitly test for
correct behavior here.
llvm-svn: 277847
This differs from the previous version by being more careful about template
instantiation/specialization in order to prevent errors when building with
clang -Werror. Specifically:
* begin is not defined in the template and is instead instantiated when Head
is. I think the warning when we don't do that is wrong (PR28815) but for now
at least do it this way to avoid the warning.
* Instead of performing template specializations in LLVM_INSTANTIATE_REGISTRY
instead provide a template definition then do explicit instantiation. No
compiler I've tried has problems with doing it the other way, but strictly
speaking it's not permitted by the C++ standard so better safe than sorry.
Original commit message:
Currently the Registry class contains the vestiges of a previous attempt to
allow plugins to be used on Windows without using BUILD_SHARED_LIBS, where a
plugin would have its own copy of a registry and export it to be imported by
the tool that's loading the plugin. This only works if the plugin is entirely
self-contained with the only interface between the plugin and tool being the
registry, and in particular this conflicts with how IR pass plugins work.
This patch changes things so that instead the add_node function of the registry
is exported by the tool and then imported by the plugin, which solves this
problem and also means that instead of every plugin having to export every
registry they use instead LLVM only has to export the add_node functions. This
allows plugins that use a registry to work on Windows if
LLVM_EXPORT_SYMBOLS_FOR_PLUGINS is used.
llvm-svn: 277806
Add a generalized IRBuilderCallbackInserter, which is just given a
callback to execute after insertion. This can be used to get rid of
the custom inserter in InstCombine, which will in turn allow me to add
target specific InstCombineCalls API for intrinsics without horrible
layering violations.
llvm-svn: 277784
This is the forth patch in the coroutine series. CoroEaly pass now lowers coro.resume
and coro.destroy intrinsics by replacing them with an indirect call to an address
returned by coro.subfn.addr intrinsic. This is done so that CGPassManager recognizes
devirtualization when CoroElide replaces a call to coro.subfn.addr with an appropriate
function address.
Patch by Gor Nishanov!
Differential Revision: https://reviews.llvm.org/D22998
llvm-svn: 277765
Summary:
TargetBaseAlign is no longer required since LSV checks if target allows misaligned accesses.
A constant defining a base alignment is still needed for stack accesses where alignment can be adjusted.
Previous patch (D22936) was reverted because tests were failing. This patch also fixes the cause of those failures:
- x86 failing tests either did not have the right target, or the right alignment.
- NVPTX failing tests did not have the right alignment.
- AMDGPU failing test (merge-stores) should allow vectorization with the given alignment but the target info
considers <3xi32> a non-standard type and gives up early. This patch removes the condition and only checks
for a maximum size allowed and relies on the next condition checking for %4 for correctness.
This should be revisited to include 3xi32 as a MVT type (on arsenm's non-immediate todo list).
Note that checking the sizeInBits for a MVT is undefined (leads to an assertion failure),
so we need to create an EVT, hence the interface change in allowsMisaligned to include the Context.
Reviewers: arsenm, jlebar, tstellarAMD
Subscribers: jholewinski, arsenm, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D23068
llvm-svn: 277735
On modern Intel processors hardware SQRT in many cases is faster than RSQRT
followed by Newton-Raphson refinement. The patch introduces a simple heuristic
to choose between hardware SQRT instruction and Newton-Raphson software
estimation.
The patch treats scalars and vectors differently. The heuristic is that for
scalars the compiler should optimize for latency while for vectors it should
optimize for throughput. It is based on the assumption that throughput bound
code is likely to be vectorized.
Basically, the patch disables scalar NR for big cores and disables NR completely
for Skylake. Firstly, scalar SQRT has shorter latency than NR code in big cores.
Secondly, vector SQRT has been greatly improved in Skylake and has better
throughput compared to NR.
Differential Revision: https://reviews.llvm.org/D21379
llvm-svn: 277725
overloaded (and simpler).
Sean rightly pointed out in code review that we've started using
"wrapper pass" as a specific part of the old pass manager, and in fact
it is more applicable there. Here, we really have a pass *template* to
build a repeated pass, so call it that.
llvm-svn: 277689
pdbdump calls DbiStreamBuilder::commit through PDBFileBuilder::commit
without calling DbiStreamBuilder::finalize. Because `finalize` initializes
`Header` member, `Header` remained nullptr which caused a crash bug.
Differential Revision: https://reviews.llvm.org/D23143
llvm-svn: 277681
changing them to Expected<> to allow them to pass through llvm Errors.
No functional change.
This commit by itself will break the next lld builds. I’ll be committing the
matching change for lld immediately next.
llvm-svn: 277656
This reverts commit the revert commit r277627. The build errors
mentioned in r277627 were likely caused by an unclean build directory.
Sorry for the noise.
llvm-svn: 277630
This reverts commit r277540. It breaks the build with:
../lib/Object/Archive.cpp:264:41: error: return type of out-of-line definition of 'llvm::object::ArchiveMemberHeader::getUID' differs from that in the declaration
Expected<unsigned> ArchiveMemberHeader::getUID() const {
~~~~~~~~~~~~~~~~~~ ^
include/llvm/Object/Archive.h:53:12: note: previous declaration is here
unsigned getUID() const;
~~~~~~~~ ^
llvm-svn: 277627
MappedBlockSTream can work with any sequence of block data where
the ordering is specified by a list of block numbers. So rather
than manually stitch them together in the case of the FPM, reuse
this functionality so that we can treat the FPM as if it were
contiguous.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D23066
llvm-svn: 277609
required by MSVC 2013.
This also makes the repeating pass wrapper assignable. Mildly
unfortunate as it means we can't use a const member for the int, but
that is a really minor invariant to try to preserve at the cost of loss
of regularity of the type. Yet another annoyance of the particular C++
object / move semantic model.
llvm-svn: 277582
manager.
While this has some utility for debugging and testing on its own, it is
primarily intended to demonstrate the technique for adding custom
wrappers that can provide more interesting interation behavior in
a nice, orthogonal, and composable layer.
Being able to write these kinds of very dynamic and customized controls
for running passes was one of the motivating use cases of the new pass
manager design, and this gives a hint at how they might look. The actual
logic is tiny here, and most of this is just wiring in the pipeline
parsing so that this can be widely used.
I'm adding this now to show the wiring without a lot of business logic.
This is a precursor patch for showing how a "iterate up to N times as
long as we devirtualize a call" utility can be added as a separable and
composable component along side the CGSCC pass management.
Differential Revision: https://reviews.llvm.org/D22405
llvm-svn: 277581
reason about and less error prone.
The core idea is to fully parse the text without trying to identify
passes or structure. This is done with a single state machine. There
were various bugs in the logic around this previously that were repeated
and scattered across the code. Having a single routine makes it much
easier to fix and get correct. For example, this routine doesn't suffer
from PR28577.
Then the actual pass construction is handled using *much* easier to read
code and simple loops, with particular pass manager construction sunk to
live with other pass construction. This is especially nice as the pass
managers *are* in fact passes.
Finally, the "implicit" pass manager synthesis is done much more simply
by forming "pre-parsed" structures rather than having to duplicate tons
of logic.
One of the bugs fixed by this was evident in the tests where we accepted
a pipeline that wasn't really well formed. Another bug is PR28577 for
which I have added a test case.
The code is less efficient than the previous code but I'm really hoping
that's not a priority. ;]
Thanks to Sean for the review!
Differential Revision: https://reviews.llvm.org/D22724
llvm-svn: 277561
Move those two options to llc:
The options in CommandFlags.h are shared by dsymutil, gold, llc,
llvm-dwp, llvm-lto, llvm-mc, lto, opt.
-stop-after/-start-after only affect codegen passes however only gold and llc
actually create codegen passes and I believe these flags to be only
useful for users of llc. For the other tools they are just highly
confusing: -stop-after claims to "Stop compilation after a specific
pass" which is not true in the context of the "opt" tool.
Differential Revision: https://reviews.llvm.org/D23050
llvm-svn: 277551
None of GlobalISel requires the property, but this lets us use the
verifier instead of rolling our own "all instructions selected" check.
llvm-svn: 277484
Selected: the InstructionSelect pass ran and all pre-isel generic
instructions have been eliminated; i.e., all instructions are now
target-specific or non-pre-isel generic instructions (e.g., COPY).
Since only pre-isel generic instructions can have generic virtual register
operands, this also means that all generic virtual registers have been
constrained to virtual registers (assigned to register classes) and that
all sizes attached to them have been eliminated.
This lets us enforce certain invariants across passes.
This property is GlobalISel-specific, but is always available.
llvm-svn: 277482
Fixes PR28670
Summary:
Rewrite the use optimizer to be less memory intensive and 50% faster.
Fixes PR28670
The new use optimizer works like a standard SSA renaming pass, storing
all possible versions a MemorySSA use could get in a stack, and just
tracking indexes into the stack.
This uses much less memory than caching N^2 alias query results.
It's also a lot faster.
The current version defers phi node walking to the normal walker.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23032
llvm-svn: 277480
The InstructionSelect pass assumes that RegBankSelect ran; set the
property on all tests (thereby verifying the test inputs) and require
it in the pass.
llvm-svn: 277477
RegBankSelected: the RegBankSelect pass ran and all generic virtual
registers have been assigned to a register bank.
This lets us enforce certain invariants across passes.
This property is GlobalISel-specific, but is always available.
llvm-svn: 277475
RegBankSelect and InstructionSelect run after the legalizer and
require a Legalized function: check that all instructions are legal.
Note that this should be in the MachineVerifier, but it can't use the
MachineLegalizer as it's currently in the separate GlobalISel library.
Note that the RegBankSelect verifier checks have the same layering
problem, but we only use inline methods so end up not needing to link
against the GlobalISel library.
llvm-svn: 277472
Legalized: The MachineLegalizer ran; all pre-isel generic instructions
have been legalized, i.e., all instructions are now one of:
- generic and always legal (e.g., COPY)
- target-specific
- legal pre-isel generic instructions.
This lets us enforce certain invariants across passes.
This property is GlobalISel-specific, but is always available.
llvm-svn: 277470
Added ability to estimate the entry count of the extracted function and
the branch probabilities of the exit branches.
Patch by River Riddle!
Differential Revision: https://reviews.llvm.org/D22744
llvm-svn: 277411
Summary: By generalize the interface, users are able to inject more flexible Node token into the algorithm, for example, a pair of vector<Node>* and index integer. Currently I only migrated SCCIterator to use NodeRef, but more is coming. It's a NFC.
Reviewers: dblaikie, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D22937
llvm-svn: 277399
Common symbol support in ORC was broken in r270716 when the symbol resolution
rules in RuntimeDyld were changed. With the switch to lazily materialized
symbols in r277386, common symbols can be supported by having
RuntimeDyld::emitCommonSymbols search for (but not materialize!) definitions
elsewhere in the logical dylib.
This patch adds the 'Common' flag to JITSymbolFlags, and the necessary check
to RuntimeDyld::emitCommonSymbols.
llvm-svn: 277397
The FPM is split at regular intervals across the MSF file, as the MS code
suggests. It turns out that the value of the interval is precisely the
block size. If the block size is 4096, then there are two Fpm pages every
4096 blocks.
So here we teach the PDBFile class to parse a split FPM, and also add more
options when dumping the FPM to display some additional information such
as orphaned pages (pages which the FPM says are allocated, but which
nothing appears to use), use after free pages (pages which the FPM says
are not allocated, but which are referenced by a stream), and multiple use
pages (pages which the FPM says are allocated but are used more than
once).
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D23022
llvm-svn: 277388
This patch replaces RuntimeDyld::SymbolInfo with JITSymbol: A symbol class
that is capable of lazy materialization (i.e. the symbol definition needn't be
emitted until the address is requested). This can be used to support common
and weak symbols in the JIT (though this is not implemented in this patch).
For consistency, RuntimeDyld::SymbolResolver is renamed to JITSymbolResolver.
For space efficiency a new class, JITEvaluatedSymbol, is introduced that
behaves like the old RuntimeDyld::SymbolInfo - i.e. it is just a pair of an
address and symbol flags. Instances of JITEvaluatedSymbol can be used in
symbol-tables to avoid paying the space cost of the materializer.
llvm-svn: 277386
We used to combine "sext(setcc x, y, cc) -> (select (setcc x, y, cc), -1, 0)"
Instead, we should combine to (select (setcc x, y, cc), T, 0) where the value
of T is 1 or -1, depending on the type of the setcc, and getBooleanContents()
for the type if it is not i1.
This fixes PR28504.
llvm-svn: 277371
As it turns out, modref queries are broken with CFLAA. Specifically,
the data source we were using for determining modref behaviors
explicitly ignores operations on non-pointer values. So, it wouldn't
note e.g. storing an i32 to an i32* (or loading an i64 from an i64*).
It also ignores external function calls, rather than acting
conservatively for them.
(N.B. These operations, where necessary, *are* tracked by CFLAA; we just
use a different mechanism to do so. Said mechanism is relatively
imprecise, so it's unlikely that we can provide reasonably good modref
answers with it as implemented.)
Patch by Jia Chen.
Differential Revision: https://reviews.llvm.org/D22978
llvm-svn: 277366
Added ability to estimate the entry count of the extracted function and
the branch probabilities of the exit branches.
Patch by River Riddle!
Differential Revision: https://reviews.llvm.org/D22744
llvm-svn: 277313
We had import_directory_table_entry and
coff_import_directory_table_entry, remove one. Also, factor out the
logic which determins if a descriptor is a terminator.
llvm-svn: 277296
are very handy when parsing text.
They are essentially a combination of startswith and a self-modifying
drop_front, or endswith and drop_back respectively.
Differential Revision: https://reviews.llvm.org/D22723
llvm-svn: 277288
Summary:
This change fixes issues with `LLVM_CONSTEXPR` functions and
`TrailingObjects::FixedSizeStorage`. In particular, some of the
functions marked `LLVM_CONSTEXPR` used by `FixedSizeStorage` were not
implemented such that they evaluate successfully as part of a constant
expression despite constant arguments.
This change also implements a more traditional template-meta path to
accommodate MSVC, and adds unit tests for `FixedSizeStorage`.
Drive-by fix: the access control for members of `TrailingObjectsImpl` is
tightened.
Reviewers: faisalv, rsmith, aaron.ballman
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D22668
llvm-svn: 277270
Summary:
This change adds `LLVM_CONSTEXPR` to functions selected as follows:
- the body is already valid under C++11 for a `constexpr` function,
- the evaluation of the function, given constant arguments, will not
fail during the evaluation of a constant expression, and
- the above properties are easily verifiable at a glance.
Note: the evaluation of the function cannot fail if the instantiation
triggers a static assertion failure.
Reviewers: faisalv, rsmith, aaron.ballman
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D22824
llvm-svn: 277269
This makes it possible to implement re-optimization on top of the
CompileOnDemandLayer.
Test case to come in a future patch: This will need an execution test, and
execution tests require a full working stack. The best option is to plumb this
API up to the C Bindings stack and add a C bindings test for this.
Patch by Sean Ogden. Thanks Sean!
llvm-svn: 277257
This should fix UB warnings from the sanitizer bots: LLD performs bit
manipulations on enums of this type, and these are UB if the underlying
storage type isn't specified.
llvm-svn: 277251
These come in two variants for now: G_INTRINSIC and G_INTRINSIC_W_SIDE_EFFECTS.
We may decide to split the latter up with finer-grained restrictions later, if
necessary.
llvm-svn: 277224
Previously this change was submitted from a Windows machine, so
changes made to the case of filenames and directory names did
not survive the commit, and as a result the CMake source file
names and the on-disk file names did not match on case-sensitive
file systems.
I'm resubmitting this patch from a Linux system, which hopefully
allows the case changes to make it through unfettered.
llvm-svn: 277213
LoopUnroll is a loop pass, so the analysis of OptimizationRemarkEmitter
is added to the common function analysis passes that loop passes
depend on.
The BFI and indirectly BPI used in this pass is computed lazily so no
overhead should be observed unless -pass-remarks-with-hotness is used.
This is how the patch affects the O3 pipeline:
Dominator Tree Construction
Natural Loop Information
Canonicalize natural loops
Loop-Closed SSA Form Pass
Basic Alias Analysis (stateless AA impl)
Function Alias Analysis Results
Scalar Evolution Analysis
+ Lazy Branch Probability Analysis
+ Lazy Block Frequency Analysis
+ Optimization Remark Emitter
Loop Pass Manager
Rotate Loops
Loop Invariant Code Motion
Unswitch loops
Simplify the CFG
Dominator Tree Construction
Basic Alias Analysis (stateless AA impl)
Function Alias Analysis Results
Combine redundant instructions
Natural Loop Information
Canonicalize natural loops
Loop-Closed SSA Form Pass
Scalar Evolution Analysis
+ Lazy Branch Probability Analysis
+ Lazy Block Frequency Analysis
+ Optimization Remark Emitter
Loop Pass Manager
Induction Variable Simplification
Recognize loop idioms
Delete dead loops
Unroll loops
...
llvm-svn: 277203