As requested in D58632, cleanup our red zone detection logic in the X86 backend. The existing X86MachineFunctionInfo flag is used to track whether we *use* the redzone (via a particularly optimization?), but there's no common way to check whether the function *has* a red zone.
I'd appreciate careful review of the uses being updated. I think they are NFC, but a careful eye from someone else would be appreciated.
Differential Revision: https://reviews.llvm.org/D61799
llvm-svn: 360479
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This patch aims to provide correct dwarf unwind information in function
epilogue for X86.
It consists of two parts. The first part inserts CFI instructions that set
appropriate cfa offset and cfa register in emitEpilogue() in
X86FrameLowering. This part is X86 specific.
The second part is platform independent and ensures that:
* CFI instructions do not affect code generation (they are not counted as
instructions when tail duplicating or tail merging)
* Unwind information remains correct when a function is modified by
different passes. This is done in a late pass by analyzing information
about cfa offset and cfa register in BBs and inserting additional CFI
directives where necessary.
Added CFIInstrInserter pass:
* analyzes each basic block to determine cfa offset and register are valid
at its entry and exit
* verifies that outgoing cfa offset and register of predecessor blocks match
incoming values of their successors
* inserts additional CFI directives at basic block beginning to correct the
rule for calculating CFA
Having CFI instructions in function epilogue can cause incorrect CFA
calculation rule for some basic blocks. This can happen if, due to basic
block reordering, or the existence of multiple epilogue blocks, some of the
blocks have wrong cfa offset and register values set by the epilogue block
above them.
CFIInstrInserter is currently run only on X86, but can be used by any target
that implements support for adding CFI instructions in epilogue.
Patch by Violeta Vukobrat.
Differential Revision: https://reviews.llvm.org/D42848
llvm-svn: 330706
The prologue-end line record must be emitted after the last
instruction that is part of the function frame setup code and before
the instruction that marks the beginning of the function body.
Patch by Carlos Alberto Enciso!
Differential Revision: https://reviews.llvm.org/D41762
llvm-svn: 325143
This reverts r317579, originally committed as r317100.
There is a design issue with marking CFI instructions duplicatable. Not
all targets support the CFIInstrInserter pass, and targets like Darwin
can't cope with duplicated prologue setup CFI instructions. The compact
unwind info emission fails.
When the following code is compiled for arm64 on Mac at -O3, the CFI
instructions end up getting tail duplicated, which causes compact unwind
info emission to fail:
int a, c, d, e, f, g, h, i, j, k, l, m;
void n(int o, int *b) {
if (g)
f = 0;
for (; f < o; f++) {
m = a;
if (l > j * k > i)
j = i = k = d;
h = b[c] - e;
}
}
We get assembly that looks like this:
; BB#1: ; %if.then
Lloh3:
adrp x9, _f@GOTPAGE
Lloh4:
ldr x9, [x9, _f@GOTPAGEOFF]
mov w8, wzr
Lloh5:
str wzr, [x9]
stp x20, x19, [sp, #-16]! ; 8-byte Folded Spill
.cfi_def_cfa_offset 16
.cfi_offset w19, -8
.cfi_offset w20, -16
cmp w8, w0
b.lt LBB0_3
b LBB0_7
LBB0_2: ; %entry.if.end_crit_edge
Lloh6:
adrp x8, _f@GOTPAGE
Lloh7:
ldr x8, [x8, _f@GOTPAGEOFF]
Lloh8:
ldr w8, [x8]
stp x20, x19, [sp, #-16]! ; 8-byte Folded Spill
.cfi_def_cfa_offset 16
.cfi_offset w19, -8
.cfi_offset w20, -16
cmp w8, w0
b.ge LBB0_7
LBB0_3: ; %for.body.lr.ph
Note the multiple .cfi_def* directives. Compact unwind info emission
can't handle that.
llvm-svn: 317726
Reland r317100 with minor fix regarding ComputeCommonTailLength function in
BranchFolding.cpp. Skipping top CFI instructions block needs to executed on
several more return points in ComputeCommonTailLength().
Original r317100 message:
"Correct dwarf unwind information in function epilogue for X86"
This patch aims to provide correct dwarf unwind information in function
epilogue for X86.
It consists of two parts. The first part inserts CFI instructions that set
appropriate cfa offset and cfa register in emitEpilogue() in
X86FrameLowering. This part is X86 specific.
The second part is platform independent and ensures that:
- CFI instructions do not affect code generation
- Unwind information remains correct when a function is modified by
different passes. This is done in a late pass by analyzing information
about cfa offset and cfa register in BBs and inserting additional CFI
directives where necessary.
Changed CFI instructions so that they:
- are duplicable
- are not counted as instructions when tail duplicating or tail merging
- can be compared as equal
Added CFIInstrInserter pass:
- analyzes each basic block to determine cfa offset and register valid at
its entry and exit
- verifies that outgoing cfa offset and register of predecessor blocks match
incoming values of their successors
- inserts additional CFI directives at basic block beginning to correct the
rule for calculating CFA
Having CFI instructions in function epilogue can cause incorrect CFA
calculation rule for some basic blocks. This can happen if, due to basic
block reordering, or the existence of multiple epilogue blocks, some of the
blocks have wrong cfa offset and register values set by the epilogue block
above them.
CFIInstrInserter is currently run only on X86, but can be used by any target
that implements support for adding CFI instructions in epilogue.
Patch by Violeta Vukobrat.
llvm-svn: 317579
This header already includes a CodeGen header and is implemented in
lib/CodeGen, so move the header there to match.
This fixes a link error with modular codegeneration builds - where a
header and its implementation are circularly dependent and so need to be
in the same library, not split between two like this.
llvm-svn: 317379
This patch aims to provide correct dwarf unwind information in function
epilogue for X86.
It consists of two parts. The first part inserts CFI instructions that set
appropriate cfa offset and cfa register in emitEpilogue() in
X86FrameLowering. This part is X86 specific.
The second part is platform independent and ensures that:
- CFI instructions do not affect code generation
- Unwind information remains correct when a function is modified by
different passes. This is done in a late pass by analyzing information
about cfa offset and cfa register in BBs and inserting additional CFI
directives where necessary.
Changed CFI instructions so that they:
- are duplicable
- are not counted as instructions when tail duplicating or tail merging
- can be compared as equal
Added CFIInstrInserter pass:
- analyzes each basic block to determine cfa offset and register valid at
its entry and exit
- verifies that outgoing cfa offset and register of predecessor blocks match
incoming values of their successors
- inserts additional CFI directives at basic block beginning to correct the
rule for calculating CFA
Having CFI instructions in function epilogue can cause incorrect CFA
calculation rule for some basic blocks. This can happen if, due to basic
block reordering, or the existence of multiple epilogue blocks, some of the
blocks have wrong cfa offset and register values set by the epilogue block
above them.
CFIInstrInserter is currently run only on X86, but can be used by any target
that implements support for adding CFI instructions in epilogue.
Patch by Violeta Vukobrat.
Differential Revision: https://reviews.llvm.org/D35844
llvm-svn: 317100
This was dead when it landed in r252578. We have this functionality, if
not for stack probe calls, but for regular calls in
X86CallFrameOptimization.cpp.
llvm-svn: 314845
The liveness-tracking code assumes that the registers that were saved
in the function's prolog are live outside of the function. Specifically,
that registers that were saved are also live-on-exit from the function.
This isn't always the case as illustrated by the LR register on ARM.
Differential Revision: https://reviews.llvm.org/D36160
llvm-svn: 310619
CFI instructions that set appropriate cfa offset and cfa register are now
inserted in emitEpilogue() in X86FrameLowering.
Majority of the changes in this patch:
1. Ensure that CFI instructions do not affect code generation.
2. Enable maintaining correct information about cfa offset and cfa register
in a function when basic blocks are reordered, merged, split, duplicated.
These changes are target independent and described below.
Changed CFI instructions so that they:
1. are duplicable
2. are not counted as instructions when tail duplicating or tail merging
3. can be compared as equal
Add information to each MachineBasicBlock about cfa offset and cfa register
that are valid at its entry and exit (incoming and outgoing CFI info). Add
support for updating this information when basic blocks are merged, split,
duplicated, created. Add a verification pass (CFIInfoVerifier) that checks
that outgoing cfa offset and register of predecessor blocks match incoming
values of their successors.
Incoming and outgoing CFI information is used by a late pass
(CFIInstrInserter) that corrects CFA calculation rule for a basic block if
needed. That means that additional CFI instructions get inserted at basic
block beginning to correct the rule for calculating CFA. Having CFI
instructions in function epilogue can cause incorrect CFA calculation rule
for some basic blocks. This can happen if, due to basic block reordering,
or the existence of multiple epilogue blocks, some of the blocks have wrong
cfa offset and register values set by the epilogue block above them.
Patch by Violeta Vukobrat.
Differential Revision: https://reviews.llvm.org/D18046
llvm-svn: 306529
Re-Commit of r300922 and r300923 with less aggressive assert (see
discussion at the end of https://reviews.llvm.org/D32205)
X86RegisterInfo::eliminateFrameIndex() and
X86FrameLowering::getFrameIndexReference() both had logic to compute the
base register. This consolidates the code.
Also use MachineInstr::isReturn instead of manually enumerating tail
call instructions (return instructions were not included in the previous
list because they never reference frame indexes).
Differential Revision: https://reviews.llvm.org/D32206
llvm-svn: 301211
It seems we have on situation in a sanitizer enable bootstrap build
where the return instruction has a frame index operand that does not
point to a fixed object and fails the assert added here.
This reverts commit r300923.
This reverts commit r300922.
llvm-svn: 301024
X86RegisterInfo::eliminateFrameIndex() and
X86FrameLowering::getFrameIndexReference() both had logic to compute the
base register. This consolidates the code.
Also use MachineInstr::isReturn instead of manually enumerating tail
call instructions (return instructions were not included in the previous
list because they never reference frame indexes).
Differential Revision: https://reviews.llvm.org/D32206
llvm-svn: 300923
Instructions CALLSEQ_START..CALLSEQ_END and their target dependent
counterparts keep data like frame size, stack adjustment etc. These
data are accessed by getOperand using hard coded indices. It is
error prone way. This change implements the access by special methods,
which improve readability and allow changing data representation without
massive changes of index values.
Differential Revision: https://reviews.llvm.org/D31953
llvm-svn: 300196
We don't need to return a MachineInstr* from these stack probe insertion
calls anyway. If we ever need to add it back, we can return an iterator
instead.
Based on a patch by David Kreitzer
This bug is a consequence of
r279314 | dexonsmith | 2016-08-19 13:40:12 -0700 (Fri, 19 Aug 2016) | 110 lines
We hit the "Assertion `!NodePtr->isKnownSentinel()' failed" assertion,
but only when inserting a stack probe call at the end of an MBB, which
isn't necessarily a common situation.
Differential Revision: https://reviews.llvm.org/D25566
llvm-svn: 284130
Summary:
... into getFrameIndexReferencePreferSP. This change folds the
fail-then-retry logic into getFrameIndexReferencePreferSP.
There is a non-functional but behaviorial change in WinException --
earlier if `getFrameIndexReferenceFromSP` failed we'd trip an assert,
but now we'll silently use the (wrong) offset from the base pointer. I
could not write the assert I'd like to write ("FrameReg ==
StackRegister", like I've done in X86FrameLowering) since there is no
easy way to get to the stack register from WinException (happy to be
proven wrong here). One solution to this is to add a `bool
OnlyStackPointer` parameter to `getFrameIndexReferenceFromSP` that
asserts if it could not satisfy its promise of returning an offset from
a stack pointer, but that seems overkill.
Reviewers: rnk
Subscribers: sanjoy, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D21427
llvm-svn: 272938
Summary:
... when the offset is not statically known.
Prioritize addresses relative to the stack pointer in the stackmap, but
fallback gracefully to other modes of addressing if the offset to the
stack pointer is not a known constant.
Patch by Oscar Blumberg!
Reviewers: sanjoy
Subscribers: llvm-commits, majnemer, rnk, sanjoy, thanm
Differential Revision: http://reviews.llvm.org/D21259
llvm-svn: 272756
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
the prologue.
Do not use basic blocks that have EFLAGS live-in as prologue if we need
to realign the stack. Realigning the stack uses AND instruction and this
clobbers EFLAGS.
An other alternative would have been to save and restore EFLAGS around
the stack realignment code, but this is likely inefficient.
Fixes PR27531.
llvm-svn: 267634
This will become necessary in a subsequent change to make this method
merge adjacent stack adjustments, i.e. it might erase the previous
and/or next instruction.
It also greatly simplifies the calls to this function from Prolog-
EpilogInserter. Previously, that had a bunch of logic to resume iteration
after the call; now it just continues with the returned iterator.
Note that this changes the behaviour of PEI a little. Previously,
it attempted to re-visit the new instruction created by
eliminateCallFramePseudoInstr(). That code was added in r36625,
but I can't see any reason for it: the new instructions will obviously
not be pseudo instructions, they will not have FrameIndex operands,
and we have already accounted for the stack adjustment.
Differential Revision: http://reviews.llvm.org/D18627
llvm-svn: 265036
without a frame pointer when unwind may happen.
This is a workaround for a bug in the way we emit the CFI directives for
frameless unwind information. See PR25614.
llvm-svn: 255175
This caused PR25607 and also caused Chromium to crash on start-up.
(Also had to update test/CodeGen/X86/avx-splat.ll, which was committed
after shrink wrapping was enabled.)
llvm-svn: 254044
Summary:
The value that the CoreCLR personality passes to a funclet for the
establisher frame may be the root function's frame or may be the parent
funclet's (mostly empty) frame in the case of nested funclets. Each
funclet stores a pointer to the root frame in its own (mostly empty)
frame, as does the root function itself. All frames allocate this slot at
the same offset, measured from the post-prolog stack pointer, so that the
same sequence can accept any ancestor as an establisher frame parameter
value, and so that a single offset can be reported to the GC, which also
looks at this slot.
This change allocate the slot when processing function entry, and records
its frame index on the WinEHFuncInfo object, then inserts the code to
set/copy it during prolog emission.
Reviewers: majnemer, AndyAyers, pgavlin, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14614
llvm-svn: 252983
For CoreCLR on Windows, stack probes must be emitted as inline sequences that probe successive stack pages
between the current stack limit and the desired new stack pointer location. This implements support for
the inline expansion on x64.
For in-body alloca probes, expansion is done during instruction lowering. For prolog probes, a stub call
is initially emitted during prolog creation, and expanded after epilog generation, to avoid complications
that arise when introducing new machine basic blocks during prolog and epilog creation.
Added a new test case, modified an existing one to exclude non-x64 coreclr (for now).
Add test case
Fix tests
llvm-svn: 252578
This adds the EH_RESTORE x86 pseudo instr, which is responsible for
restoring the stack pointers: EBP and ESP, and ESI if stack realignment
is involved. We only need this on 32-bit x86, because on x64 the runtime
restores CSRs for us.
Previously we had to keep the CATCHRET instruction around during SEH so
that we could convince X86FrameLowering to restore our frame pointers.
Now we can split these instructions earlier.
This was confusing, because we had a return instruction which wasn't
really a return and was ultimately going to be removed by
X86FrameLowering. This change also simplifies X86FrameLowering, which
really shouldn't be building new MBBs.
No observable functional change currently, but with the new register
mask stuff in D14407, CATCHRET will become a register allocator barrier,
and our existing tests rely on us having reasonable register allocation
around SEH.
llvm-svn: 252266
We already had a test for this for 32-bit SEH catchpads, but those don't
actually create funclets. We had a bug that only appeared in funclet
prologues, where we would establish EBP and ESI as our FP and BP, and
then downstream prologue code would overwrite them.
While I was at it, I fixed Win64+funclets+stackrealign. This issue
doesn't come up as often there due to the ABI requring 16 byte stack
alignment, but now we can rest easy that AVX and WinEH will work well
together =P.
llvm-svn: 252210
When push instructions are being used to pass function arguments on
the stack, and either EH or debugging are enabled, we need to generate
.cfi_adjust_cfa_offset directives appropriately. For (synch) EH, it is
enough for the CFA offset to be correct at every call site, while
for debugging we want to be correct after every push.
Darwin does not support this well, so don't use pushes whenever it
would be required.
Differential Revision: http://reviews.llvm.org/D13767
llvm-svn: 251904
Our previous value of "16 + 8 + MaxCallFrameSize" for ParentFrameOffset
is incorrect when CSRs are involved. We were supposed to have a test
case to catch this, but it wasn't very rigorous.
The main effect here is that calling _CxxThrowException inside a
catchpad doesn't immediately crash on MOVAPS when you have an odd number
of CSRs.
llvm-svn: 250583
This makes catchret look more like a branch, and less like a weird use
of BlockAddress. It also lets us get away from
llvm.x86.seh.restoreframe, which relies on the old parentfpoffset label
arithmetic.
llvm-svn: 247936
Summary:
32-bit funclets have short prologues that allocate enough stack for the
largest call in the whole function. The runtime saves CSRs for the
funclet. It doesn't restore CSRs after we finally transfer control back
to the parent funciton via a CATCHRET, but that's a separate issue.
32-bit funclets also have to adjust the incoming EBP value, which is
what llvm.x86.seh.recoverframe does in the old model.
64-bit funclets need to spill CSRs as normal. For simplicity, this just
spills the same set of CSRs as the parent function, rather than trying
to compute different CSR sets for the parent function and each funclet.
64-bit funclets also allocate enough stack space for the largest
outgoing call frame, like 32-bit.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12546
llvm-svn: 247092
function.
This was the same as getFrameIndexReference, but without the FrameReg
output.
Differential Revision: http://reviews.llvm.org/D12042
llvm-svn: 245148
When optimizing for size, replace "addl $4, %esp" and "addl $8, %esp"
following a call by one or two pops, respectively. We don't try to do it in
general, but only when the stack adjustment immediately follows a call - which
is the most common case.
That allows taking a short-cut when trying to find a free register to pop into,
instead of a full-blown liveness check. If the adjustment immediately follows a
call, then every register the call clobbers but doesn't define should be dead at
that point, and can be used.
Differential Revision: http://reviews.llvm.org/D11749
llvm-svn: 244578
This changes TargetFrameLowering::processFunctionBeforeCalleeSavedScan():
- Rename the function to determineCalleeSaves()
- Pass a bitset of callee saved registers by reference, thus avoiding
the function-global PhysRegUsed bitset in MachineRegisterInfo.
- Without PhysRegUsed the implementation is fine tuned to not save
physcial registers which are only read but never modified.
Related to rdar://21539507
Differential Revision: http://reviews.llvm.org/D10909
llvm-svn: 242165
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
Deduplicates some code and lets us use LEA on atom when adjusting the
stack around callee-cleanup calls. This is the only intended
functionality change.
llvm-svn: 240044
There is a one-to-one relationship between X86Subtarget and
X86FrameLowering, but every frame lowering method would previously pull
the subtarget off the MachineFunction and query some subtarget
properties.
Over time, these locals began to grow in complexity and it became
important to keep their names and meaning in sync across all of the
frame lowering methods, leading to duplication. We can eliminate that
duplication by computing them once in the constructor.
llvm-svn: 239948
With this patch the x86 backend is now shrink-wrapping capable
and this functionality can be tested by using the
-enable-shrink-wrap switch.
The next step is to make more test and enable shrink-wrapping by
default for x86.
Related to <rdar://problem/20821487>
llvm-svn: 238293