This patch introduces the new .bb_addr_map section feature which allows us to emit the bits needed for mapping binary profiles to basic blocks into a separate section.
The format of the emitted data is represented as follows. It includes a header for every function:
| Address of the function | -> 8 bytes (pointer size)
| Number of basic blocks in this function (>0) | -> ULEB128
The header is followed by a BB record for every basic block. These records are ordered in the same order as MachineBasicBlocks are placed in the function. Each BB Info is structured as follows:
| Offset of the basic block relative to function begin | -> ULEB128
| Binary size of the basic block | -> ULEB128
| BB metadata | -> ULEB128 [ MBB.isReturn() OR MBB.hasTailCall() << 1 OR MBB.isEHPad() << 2 ]
The new feature will replace the existing "BB labels" functionality with -basic-block-sections=labels.
The .bb_addr_map section scrubs the specially-encoded BB symbols from the binary and makes it friendly to profilers and debuggers.
Furthermore, the new feature reduces the binary size overhead from 70% bloat to only 12%.
For more information and results please refer to the RFC: https://lists.llvm.org/pipermail/llvm-dev/2020-July/143512.html
Reviewed By: MaskRay, snehasish
Differential Revision: https://reviews.llvm.org/D85408
We introduce a codegen optimization pass which splits functions into hot and cold
parts. This pass leverages the basic block sections feature recently
introduced in LLVM from the Propeller project. The pass targets
functions with profile coverage, identifies cold blocks and moves them
to a separate section. The linker groups all cold blocks across
functions together, decreasing fragmentation and improving icache and
itlb utilization.
We evaluated the Machine Function Splitter pass on clang bootstrap and
SPECInt 2017.
For clang bootstrap we observe a mean 2.33% runtime improvement with a
~32% reduction in itlb and stlb misses. Additionally, L1 icache misses
reduced by 9.5% while L2 instruction misses reduced by 20%.
For SPECInt we report the change in IntRate the C/C++
benchmarks. All benchmarks apart from mcf and x264 improve, on average
by 0.6% with the max for deepsjeng at 1.6%.
Benchmark % Change
500.perlbench_r 0.78
502.gcc_r 0.82
505.mcf_r -0.30
520.omnetpp_r 0.18
523.xalancbmk_r 0.37
525.x264_r -0.46
531.deepsjeng_r 1.61
541.leela_r 0.83
557.xz_r 0.15
Differential Revision: https://reviews.llvm.org/D85368