Fixes the bug found by asan. Also XFAIL the new test for Darwin,
which is stuck on DWARF v2, and fix up other tests so they stop
failing on Windows.
llvm-svn: 326839
DWARF v5 specifies that the root file (also given in the DW_AT_name
attribute of the compilation unit DIE) should be emitted explicitly to
the line table's list of files. This makes the line table more
independent of the .debug_info section.
Differential Revision: https://reviews.llvm.org/D44054
llvm-svn: 326758
n Rust, an enum that carries data in the variants is, essentially, a
discriminated union. Furthermore, the Rust compiler will perform
space optimizations on such enums in some situations. Previously,
DWARF for these constructs was emitted using a hack (a magic field
name); but this approach stopped working when more space optimizations
were added in https://github.com/rust-lang/rust/pull/45225.
This patch changes LLVM to allow discriminated unions to be
represented in DWARF. It adds createDiscriminatedUnionType and
createDiscriminatedMemberType to DIBuilder and then arranges for this
to be emitted using DWARF's DW_TAG_variant_part and DW_TAG_variant.
Note that DWARF requires that a discriminated union be represented as
a structure with a variant part. However, as Rust only needs to emit
pure discriminated unions, this is what I chose to expose on
DIBuilder.
Patch by Tom Tromey!
Differential Revision: https://reviews.llvm.org/D42082
llvm-svn: 324426
Summary: This is the producer side for DWARF v5 string offsets tables. The reader/consumer
side was committed with r321295. All compile and type units in a module share a
contribution to the string offsets table. Indirect strings use the strx{1,2,3,4} index forms.
Reviewers: dblaikie, aprantl, JDevliegehere
Differential Revision: https://reviews.llvm.org/D42021
llvm-svn: 323546
Pass MD5 checksums through from IR to assembly/object files.
After this, getting Clang to compute the MD5 should be the last step
to supporting MD5 in the DWARF v5 line table header.
Differential Revision: https://reviews.llvm.org/D41926
llvm-svn: 322391
Turns out that the Fission/Split DWARF package format (DWP) is currently
insufficient to handle cross-CU (ref_addr) references. So for now,
duplicate any debug info needed in these situations:
* inlined_subroutine's abstract_origin
* inlined variable's abstract_origin
* types
Keep the ref_addr behavior in general, including in the split DWARF
inline debug info that can be emitted into the object files for online
symbolication.
Keep a flag to use the old (ref_addr) behavior for testing ways of
addressing this limitation in the DWP tool (& for those not using DWP
packaging).
llvm-svn: 302858
Fixes the issue highlighted in
http://lists.llvm.org/pipermail/cfe-dev/2014-June/037500.html.
The DW_AT_decl_file and DW_AT_decl_line attributes on namespaces can
prevent LLVM from uniquing types that are in the same namespace. They
also don't carry any meaningful information.
rdar://problem/17484998
Differential Revision: https://reviews.llvm.org/D32648
llvm-svn: 301706
For Swift we would like to be able to encode the error types that a
function may throw, so the debugger can display them alongside the
function's return value when finish-ing a function.
DWARF defines DW_TAG_thrown_type (intended to be used for C++ throw()
declarations) that is a perfect fit for this purpose. This patch wires
up support for DW_TAG_thrown_type in LLVM by adding a list of thrown
types to DISubprogram.
To offset the cost of the extra pointer, there is a follow-up patch
that turns DISubprogram into a variable-length node.
rdar://problem/29481673
Differential Revision: https://reviews.llvm.org/D32559
llvm-svn: 301489
In dwo files the fixed offset can be used - if the dwos are linked into
a dwp, the dwo consumer must use the dwp tables to find out where the
original range of the debug_info was and resolve the "section relative"
value relative to that original range - effectively
avoiding/reimplementing the relocation handling.
llvm-svn: 301072
This reverts commit r242302. External type refs of this form were
never used by any LLVM frontend so this is effectively dead code.
(They were introduced to support clang module debug info, but in the
end we came up with a better design that doesn't use this feature at
all.)
rdar://problem/25897929
Differential Revision: https://reviews.llvm.org/D30917
llvm-svn: 297684
Requesting DWARF v5 will now get you the new compile-unit and
type-unit headers. llvm-dwarfdump will also recognize them.
Differential Revision: http://reviews.llvm.org/D30206
llvm-svn: 296514
While looking to add support for placing singular types (types that will
only be emitted in one place (such as attached to a strong vtable or
explicit template instantiation definition)) not in type units (since
type units have overhead) I stumbled across that change causing an
increase in pubtypes.
Turns out we were missing some types from type units if they were only
referenced from other type units and not from the debug_info section.
This fixes that, following GCC's line of describing the offset of such
entities as the CU die (since there's no compile unit-relative offset
that would describe such an entity - they aren't in the CU). Also like
GCC, this change prefers to describe the type stub within the CU rather
than the "just use the CU offset" fallback where possible. This may give
the DWARF consumer some opportunity to find the extra info in the type
stub - though I'm not sure GDB does anything with this currently.
The size of the pubnames/pubtypes sections now match exactly with or
without type units enabled.
This nearly triples (+189%) the pubtypes section for a clang self-host
and grows pubnames by 0.07% (without compression). For a total of 8%
increase in debug info sections of the objects of a Split DWARF build
when using type units.
llvm-svn: 293971
LLVM's use of DW_OP_bit_piece is incorrect and a based on a
misunderstanding of the wording in the DWARF specification. The offset
argument of DW_OP_bit_piece refers to the offset into the location
that is on the top of the DWARF expression stack, and not an offset
into the source variable. This has since also been clarified in the
DWARF specification.
This patch fixes all uses of DW_OP_bit_piece to emit the correct
offset and simplifies the DwarfExpression class to semi-automaticaly
emit empty DW_OP_pieces to adjust the offset of the source variable,
thus simplifying the code using DwarfExpression.
While this is an incompatible bugfix, in practice I don't expect this
to be much of a problem since LLVM's old interpretation and the
correct interpretation of DW_OP_bit_piece differ only when there are
gaps in the fragmented locations of the described variables or if
individual fragments are smaller than a byte. LLDB at least won't
interpret locations with gaps in them because is has no way to present
undefined bits in a variable, and there is a high probability that an
old-form expression will be malformed when interpreted correctly,
because the DW_OP_bit_piece offset will be outside of the location at
the top of the stack.
As a nice side-effect, this patch enables us to use a more efficient
encoding for subregisters: In order to express a sub-register at a
non-zero offset we now use a DW_OP_bit_piece instead of shifting the
value into place manually.
This patch also adds missing test coverage for code paths that weren't
exercised before.
<rdar://problem/29335809>
Differential Revision: https://reviews.llvm.org/D27550
llvm-svn: 289266
so we can stop using DW_OP_bit_piece with the wrong semantics.
The entire back story can be found here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161114/405934.html
The gist is that in LLVM we've been misinterpreting DW_OP_bit_piece's
offset field to mean the offset into the source variable rather than
the offset into the location at the top the DWARF expression stack. In
order to be able to fix this in a subsequent patch, this patch
introduces a dedicated DW_OP_LLVM_fragment operation with the
semantics that we used to apply to DW_OP_bit_piece, which is what we
actually need while inside of LLVM. This patch is complete with a
bitcode upgrade for expressions using the old format. It does not yet
fix the DWARF backend to use DW_OP_bit_piece correctly.
Implementation note: We discussed several options for implementing
this, including reserving a dedicated field in DIExpression for the
fragment size and offset, but using an custom operator at the end of
the expression works just fine and is more efficient because we then
only pay for it when we need it.
Differential Revision: https://reviews.llvm.org/D27361
rdar://problem/29335809
llvm-svn: 288683
The DIEUnit class represents a compile or type unit and it owns the unit DIE as an instance variable. This allows anyone with a DIE, to get the unit DIE, and then get back to its DIEUnit without adding any new ivars to the DIE class. Why was this needed? The DIE class has an Offset that is always the CU relative DIE offset, not the "offset in debug info section" as was commented in the header file (the comment has been corrected). This is great for performance because most DIE references are compile unit relative and this means most code that accessed the DIE's offset didn't need to make it into a compile unit relative offset because it already was. When we needed to emit a DW_FORM_ref_addr though, we needed to find the absolute offset of the DIE by finding the DIE's compile/type unit. This class did have the absolute debug info/type offset and could be added to the CU relative offset to compute the absolute offset. With this change we can easily get back to a DIE's DIEUnit which will have this needed offset. Prior to this is required having a DwarfDebug and required calling:
DwarfCompileUnit *DwarfDebug::lookupUnit(const DIE *CU) const;
Now we can use the DIEUnit class to do so without needing DwarfDebug. All clients now use DIEUnit objects (the DwarfDebug stack and the DwarfLinker). A follow on patch for the DWARF generator will also take advantage of this.
Differential Revision: https://reviews.llvm.org/D27170
llvm-svn: 288399
Eliminate DITypeIdentifierMap and make DITypeRef a thin wrapper around
DIType*. It is no longer legal to refer to a DICompositeType by its
'identifier:', and DIBuilder no longer retains all types with an
'identifier:' automatically.
Aside from the bitcode upgrade, this is mainly removing logic to resolve
an MDString-based reference to an actualy DIType. The commits leading
up to this have made the implicit type map in DICompileUnit's
'retainedTypes:' field superfluous.
This does not remove DITypeRef, DIScopeRef, DINodeRef, and
DITypeRefArray, or stop using them in DI-related metadata. Although as
of this commit they aren't serving a useful purpose, there are patchces
under review to reuse them for CodeView support.
The tests in LLVM were updated with deref-typerefs.sh, which is attached
to the thread "[RFC] Lazy-loading of debug info metadata":
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098318.html
llvm-svn: 267296
Rather than storing type units in a vector and emitting them at the end
of code generation, emit them immediately and destroy them, reclaiming the
memory we were using for their DIEs.
In one benchmark carried out against Chromium's 50 largest (by bitcode
file size) translation units, total peak memory consumption with type units
decreased by median 17%, or by 7% when compared against disabling type units.
Tested using check-{llvm,clang}, the GDB 7.5 test suite (with
'-fdebug-types-section') and by eyeballing llvm-dwarfdump output on those
Chromium translation units with split DWARF both disabled and enabled, and
verifying that the only changes were to addresses and abbreviation ordering.
Differential Revision: http://reviews.llvm.org/D17118
llvm-svn: 260578
This is a necessary prerequisite for bootstrapping the emission
of debug info inside modules.
- Adds a FlagExternalTypeRef to DICompositeType.
External types must have a unique identifier.
- External type references are emitted using a forward declaration
with a DW_AT_signature([DW_FORM_ref_sig8]) based on the UID.
http://reviews.llvm.org/D9612
llvm-svn: 242302
Function static variables, typedefs and records (class, struct or union) declared inside
a lexical scope were associated with the function as their parent scope, rather than the
lexical scope they are defined or declared in.
This fixes PR19238
Patch by: amjad.aboud@intel.com
Differential Revision: http://reviews.llvm.org/D9758
llvm-svn: 241153
Replace the `std::vector<>` for `DIE::Children` with an intrusively
linked list. This is a strict memory improvement: it requires no
auxiliary storage, and reduces `sizeof(DIE)` by one pointer. It also
factors out the DIE-related malloc traffic.
This drops llc memory usage from 735 MB down to 718 MB, or ~2.3%.
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
llvm-svn: 240736
Change `DIE::Values` to a singly linked list, where each node is
allocated on a `BumpPtrAllocator`. In order to support `push_back()`,
the list is circular, and points at the tail element instead of the
head. I abstracted the core list logic out to `IntrusiveBackList` so
that it can be reused for `DIE::Children`, which also cares about
`push_back()`.
This drops llc memory usage from 799 MB down to 735 MB, about 8%.
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
llvm-svn: 240733
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
This reverts commit r238350, effectively reapplying r238349 after fixing
(all?) the problems, all somehow related to how I was using
`AlignedArrayCharUnion<>` inside `DIEValue`:
- MSVC can only handle `sizeof()` on types, not values. Change the
assert.
- GCC doesn't know the `is_trivially_copyable` type trait. Instead of
asserting it, add destructors.
- Call placement new even when constructing POD (i.e., the pointers).
- Instead of copying the char buffer, copy the casted classes.
I've left in a couple of `static_assert`s that I think both MSVC and GCC
know how to handle. If the bots disagree with me, I'll remove them.
- Check that the constructed type is either standard layout or a
pointer. This protects against a programming error: we really want
the "small" `DIEValue`s to be small and simple, so don't
accidentally change them not to be.
- Similarly, check that the size of the buffer is no bigger than a
`uint64_t` or a pointer. (I thought checking against
`sizeof(uint64_t)` would be good enough, but Chandler suggested that
pointers might sometimes be bigger than that in the context of
sanitizers.)
I've also committed r238359 in the meantime, which introduces a
DIEValue.def to simplify dispatching between the various types (thanks
to a review comment by David Blaikie). Without that, this commit would
be almost unintelligible.
Here's the original commit message:
--
Change `DIEValue` to be stored/passed/etc. by value, instead of
reference. It's now a discriminated union, with a `Val` field storing
the actual type. The classes that used to inherit from `DIEValue` no
longer do. There are two categories of these:
- Small values fit in a single pointer and are stored by value.
- Large values require auxiliary storage, and are stored by reference.
The only non-mechanical change is to tools/dsymutil/DwarfLinker.cpp. It
was relying on `DIEInteger`s being passed around by reference, so I
replaced that assumption with a `PatchLocation` type that stores a safe
reference to where the `DIEInteger` lives instead.
This commit causes a temporary regression in memory usage, since I've
left merging `DIEAbbrevData` into `DIEValue` for a follow-up commit. I
measured an increase from 845 MB to 879 MB, around 3.9%. The follow-up
drops it lower than the starting point, and I've only recently brought
the memory this low anyway, so I'm committing these changes separately
to keep them incremental. (I also considered swapping the commits, but
the other one first would cause a lot more code churn.)
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
--
llvm-svn: 238362
This reverts commit r238349, since it caused some errors on bots:
- std::is_trivially_copyable isn't available until GCC 5.0.
- It was complaining about strict aliasing with my use of
ArrayCharUnion.
llvm-svn: 238350
Change `DIEValue` to be stored/passed/etc. by value, instead of
reference. It's now a discriminated union, with a `Val` field storing
the actual type. The classes that used to inherit from `DIEValue` no
longer do. There are two categories of these:
- Small values fit in a single pointer and are stored by value.
- Large values require auxiliary storage, and are stored by reference.
The only non-mechanical change is to tools/dsymutil/DwarfLinker.cpp. It
was relying on `DIEInteger`s being passed around by reference, so I
replaced that assumption with a `PatchLocation` type that stores a safe
reference to where the `DIEInteger` lives instead.
This commit causes a temporary regression in memory usage, since I've
left merging `DIEAbbrevData` into `DIEValue` for a follow-up commit. I
measured an increase from 845 MB to 879 MB, around 3.9%. The follow-up
drops it lower than the starting point, and I've only recently brought
the memory this low anyway, so I'm committing these changes separately
to keep them incremental. (I also considered swapping the commits, but
the other one first would cause a lot more code churn.)
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
llvm-svn: 238349
This starts merging MCSection and MCSectionData.
There are a few issues with the current split between MCSection and
MCSectionData.
* It optimizes the the not as important case. We want the production
of .o files to be really fast, but the split puts the information used
for .o emission in a separate data structure.
* The ELF/COFF/MachO hierarchy is not represented in MCSectionData,
leading to some ad-hoc ways to represent the various flags.
* It makes it harder to remember where each item is.
The attached patch starts merging the two by moving the alignment from
MCSectionData to MCSection.
Most of the patch is actually just dropping 'const', since
MCSectionData is mutable, but MCSection was not.
llvm-svn: 237936
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
llvm-svn: 236120
Remove the `DIArray` and `DITypeArray` typedefs, preferring the
underlying types (`DebugNodeArray` and `MDTypeRefArray`, respectively).
llvm-svn: 235413