Summary:
Based on Fred's patch here: https://reviews.llvm.org/D6771
I can't seem to commandeer the old review, so I'm creating a new one.
With that change the locations exrpessions are pretty printed inline in the
DIE tree. The output looks like this for debug_loc entries:
DW_AT_location [DW_FORM_data4] (0x00000000
0x0000000000000001 - 0x000000000000000b: DW_OP_consts +3
0x000000000000000b - 0x0000000000000012: DW_OP_consts +7
0x0000000000000012 - 0x000000000000001b: DW_OP_reg0 RAX, DW_OP_piece 0x4
0x000000000000001b - 0x0000000000000024: DW_OP_breg5 RDI+0)
And like this for debug_loc.dwo entries:
DW_AT_location [DW_FORM_sec_offset] (0x00000000
Addr idx 2 (w/ length 190): DW_OP_consts +0, DW_OP_stack_value
Addr idx 3 (w/ length 23): DW_OP_reg0 RAX, DW_OP_piece 0x4)
Simple locations without ranges are printed inline:
DW_AT_location [DW_FORM_block1] (DW_OP_reg4 RSI, DW_OP_piece 0x4, DW_OP_bit_piece 0x20 0x0)
The debug_loc(.dwo) dumping in changed accordingly to factor the code.
Reviewers: dblaikie, aprantl, friss
Subscribers: mgorny, javed.absar, hiraditya, llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D37123
llvm-svn: 312042
Summary:
For inalloca functions, this is a very common code pattern:
%argpack = type <{ i32, i32, i32 }>
define void @f(%argpack* inalloca %args) {
entry:
%a = getelementptr inbounds %argpack, %argpack* %args, i32 0, i32 0
%b = getelementptr inbounds %argpack, %argpack* %args, i32 0, i32 1
%c = getelementptr inbounds %argpack, %argpack* %args, i32 0, i32 2
tail call void @llvm.dbg.declare(metadata i32* %a, ... "a")
tail call void @llvm.dbg.declare(metadata i32* %c, ... "b")
tail call void @llvm.dbg.declare(metadata i32* %b, ... "c")
Even though these GEPs can be simplified to a constant offset from EBP
or RSP, we don't do that at -O0, and each GEP is computed into a
register. Registers used to compute argument addresses are typically
spilled and clobbered very quickly after the initial computation, so
live debug variable tracking loses information very quickly if we use
DBG_VALUE instructions.
This change moves processing of dbg.declare between argument lowering
and basic block isel, so that we can ask if an argument has a frame
index or not. If the argument lives in a register as is the case for
byval arguments on some targets, then we don't put it in the side table
and during ISel we emit DBG_VALUE instructions.
Reviewers: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32980
llvm-svn: 302483
Debug information is calculated with getFrameIndexReference() which was
missing some logic for the fixed object cases (= parameters on the stack).
rdar://24557797
Differential Revision: https://reviews.llvm.org/D32204
llvm-svn: 300781