This moves the exit block and insertion point computation to be eager,
instead of after seeing the first scalar we can promote.
The cost is relatively small (the computation happens anyway, see discussion
on D28147), and the code is easier to follow, and can bail out earlier
if there's a catchswitch present.
llvm-svn: 290729
We would check whether we have a prehader *or* dedicated exit blocks,
and go into the promotion loop. Then, for each alias set we'd check
if we have a preheader *and* dedicated exit blocks, and bail if not.
Instead, bail immediately if we don't have both.
llvm-svn: 290728
We want to recompute LCSSA only when we actually promoted a value.
This means we only need to look at changes made by promotion when
deciding whether to recompute it or not, not at regular sinking/hoisting.
(This was what the code was documented as doing, just not what it did)
Hopefully NFC.
llvm-svn: 290726
The pass creates some state which expects to be cleaned up by
a later instance of the same pass. opt-bisect happens to expose
this not ideal design because calling skipLoop() will result in
this state not being cleaned up at times and an assertion firing
in `doFinalization()`. Chandler tells me the new pass manager will
give us options to avoid these design traps, but until it's not ready,
we need a workaround for the current pass infrastructure. Fix provided
by Andy Kaylor, see the review for a complete discussion.
Differential Revision: https://reviews.llvm.org/D25848
llvm-svn: 290427
Summary: LICM may hoist instructions to preheader speculatively. Before code generation, we need to sink down the hoisted instructions inside to loop if it's beneficial. This pass is a reverse of LICM: looking at instructions in preheader and sinks the instruction to basic blocks inside the loop body if basic block frequency is smaller than the preheader frequency.
Reviewers: hfinkel, davidxl, chandlerc
Subscribers: anna, modocache, mgorny, beanz, reames, dberlin, chandlerc, mcrosier, junbuml, sanjoy, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D22778
llvm-svn: 285308
Summary: LoopSink pass uses some common function in LICM. This patch refactor the LICM code to make it usable by LoopSink pass (https://reviews.llvm.org/D22778).
Reviewers: davidxl, danielcdh, hfinkel, chandlerc
Subscribers: hfinkel, llvm-commits
Differential Revision: https://reviews.llvm.org/D24168
llvm-svn: 283134
r280425 | dehao | 2016-09-01 16:15:50 -0700 (Thu, 01 Sep 2016) | 9 lines
Refactor LICM pass in preparation for LoopSink pass.
Summary: LoopSink pass uses some common function in LICM. This patch refactor the LICM code to make it usable by LoopSink pass (https://reviews.llvm.org/D22778).
r280429 | dehao | 2016-09-01 16:31:25 -0700 (Thu, 01 Sep 2016) | 9 lines
Refactor LICM to expose canSinkOrHoistInst to LoopSink pass.
Summary: LoopSink pass shares the same canSinkOrHoistInst functionality with LICM pass. This patch exposes this function in preparation of https://reviews.llvm.org/D22778
llvm-svn: 280453
Summary: LoopSink pass shares the same canSinkOrHoistInst functionality with LICM pass. This patch exposes this function in preparation of https://reviews.llvm.org/D22778
Reviewers: chandlerc, davidxl, danielcdh
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24171
llvm-svn: 280429
Summary: LoopSink pass uses some common function in LICM. This patch refactor the LICM code to make it usable by LoopSink pass (https://reviews.llvm.org/D22778).
Reviewers: chandlerc, davidxl, danielcdh
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24168
llvm-svn: 280425
One exception here is LoopInfo which must forward-declare it (because
the typedef is in LoopPassManager.h which depends on LoopInfo).
Also, some includes for LoopPassManager.h were needed since that file
provides the typedef.
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278079
Just because we can constant fold the result of an instruction does not
imply that we can delete the instruction. It may have side effects.
This fixes PR28655.
llvm-svn: 276389
This actually uncovered a surprisingly large chain of ultimately unused
TLI args.
From what I can gather, this argument is a remnant of when
isKnownNonNull would look at the TLI directly.
The current approach seems to be that InferFunctionAttrs runs early in
the pipeline and uses TLI to annotate the TLI-dependent non-null
information as return attributes.
This also removes the dependence of functionattrs on TLI altogether.
llvm-svn: 274455
Summary:
We can avoid repeating the check `isGuaranteedToExecute` when it's already called once while checking if the alignment can be widened for the load/store being hoisted.
The function is invariant for the same instruction `UI` in `isGuaranteedToExecute(*UI, DT, CurLoop, SafetyInfo);`
Reviewers: hfinkel, eli.friedman
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D21672
llvm-svn: 273671
Summary:
Make isGuaranteedToExecute use the
isGuaranteedToTransferExecutionToSuccessor helper, and make that helper
a bit more accurate.
There's a potential performance impact here from assuming that arbitrary
calls might not return. This probably has little impact on loads and
stores to a pointer because most things alias analysis can reason about
are dereferenceable anyway. The other impacts, like less aggressive
hoisting of sdiv by a variable and less aggressive hoisting around
volatile memory operations, are unlikely to matter for real code.
This also impacts SCEV, which uses the same helper. It's a minor
improvement there because we can tell that, for example, memcpy always
returns normally. Strictly speaking, it's also introducing
a bug, but it's not any worse than everywhere else we assume readonly
functions terminate.
Fixes http://llvm.org/PR27857.
Reviewers: hfinkel, reames, chandlerc, sanjoy
Subscribers: broune, llvm-commits
Differential Revision: http://reviews.llvm.org/D21167
llvm-svn: 272489
Summary:
This hasn't been caught before because it requires noalias or similarly
strong alias analysis to actually reproduce.
Fixes http://llvm.org/PR27952 .
Reviewers: hfinkel, sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D20944
llvm-svn: 271858
SCEV caches whether SCEV expressions are loop invariant, variant or
computable. LICM breaks this cache, almost by definition; so clear the
SCEV disposition cache if LICM changed anything.
llvm-svn: 268408
The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267231
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.
The bisection is enabled using a new command line option (-opt-bisect-limit). Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit. A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.
The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check. Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute. A new function call has been added for module and SCC passes that behaves in a similar way.
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267022
This patch teaches LICM's implementation of store promotion to exploit the fact that the memory location being accessed might be provable thread local. The fact it's thread local weakens the requirements for where we can insert stores since no other thread can observe the write. This allows us perform store promotion even in cases where the store is not guaranteed to execute in the loop.
Two key assumption worth drawing out is that this assumes a) no-capture is strong enough to imply no-escape, and b) standard allocation functions like malloc, calloc, and operator new return values which can be assumed not to have previously escaped.
In future work, it would be nice to generalize this so that it works without directly seeing the allocation site. I believe that the nocapture return attribute should be suitable for this purpose, but haven't investigated carefully. It's also likely that we could support unescaped allocas with similar reasoning, but since SROA and Mem2Reg should destroy those, they're less interesting than they first might seem.
Differential Revision: http://reviews.llvm.org/D16783
llvm-svn: 263072
merged into a loop that was subsequently unrolled (or otherwise nuked).
In this case it can't merge in the ASTs for any remaining nested loops,
it needs to re-add their instructions dircetly.
The fix is very isolated, but I've pulled the code for merging blocks
into the AST into a single place in the process. The only behavior
change is in the case which would have crashed before.
This fixes a crash reported by Mikael Holmen on the list after r261316
restored much of the loop pass pipelining and allowed us to actually do
this kind of nested transformation sequenc. I've taken that test case
and further reduced it into the somewhat twisty maze of loops in the
included test case. This does in fact trigger the bug even in this
reduced form.
llvm-svn: 262108
routine.
We were getting this wrong in small ways and generally being very
inconsistent about it across loop passes. Instead, let's have a common
place where we do this. One minor downside is that this will require
some analyses like SCEV in more places than they are strictly needed.
However, this seems benign as these analyses are complete no-ops, and
without this consistency we can in many cases end up with the legacy
pass manager scheduling deciding to split up a loop pass pipeline in
order to run the function analysis half-way through. It is very, very
annoying to fix these without just being very pedantic across the board.
The only loop passes I've not updated here are ones that use
AU.setPreservesAll() such as IVUsers (an analysis) and the pass printer.
They seemed less relevant.
With this patch, almost all of the problems in PR24804 around loop pass
pipelines are fixed. The one remaining issue is that we run simplify-cfg
and instcombine in the middle of the loop pass pipeline. We've recently
added some loop variants of these passes that would seem substantially
cleaner to use, but this at least gets us much closer to the previous
state. Notably, the seven loop pass managers is down to three.
I've not updated the loop passes using LoopAccessAnalysis because that
analysis hasn't been fully wired into LoopSimplify/LCSSA, and it isn't
clear that those transforms want to support those forms anyways. They
all run late anyways, so this is harmless. Similarly, LSR is left alone
because it already carefully manages its forms and doesn't need to get
fused into a single loop pass manager with a bunch of other loop passes.
LoopReroll didn't use loop simplified form previously, and I've updated
the test case to match the trivially different output.
Finally, I've also factored all the pass initialization for the passes
that use this technique as well, so that should be done regularly and
reliably.
Thanks to James for the help reviewing and thinking about this stuff,
and Ben for help thinking about it as well!
Differential Revision: http://reviews.llvm.org/D17435
llvm-svn: 261316
LICM starts with an *empty* AST, and then merges in each sub-loop. While the
add code is appropriate for sub-loop 2 and up, it's utterly unnecessary for
sub-loop 1. If the AST starts off empty, we can just clone/move the contents
of the subloop into the containing AST.
Reviewed-by: Philip Reames <listmail@philipreames.com>
Differential Revision: http://reviews.llvm.org/D16753
llvm-svn: 260892
Summary:
If the instruction we're hoisting out of a loop into its preheader is
guaranteed to have executed in the loop, then the metadata associated
with the instruction (e.g. !range or !dereferenceable) is valid in the
preheader. This is because once we're in the preheader, we know we're
eventually going to reach the location the metadata was valid at.
This change makes LICM smarter around this, and helps it recognize cases
like these:
```
do {
int a = *ptr; !range !0
...
} while (i++ < N);
```
to
```
int a = *ptr; !range !0
do {
...
} while (i++ < N);
```
Earlier we'd drop the `!range` metadata after hoisting the load from
`ptr`.
Reviewers: igor-laevsky
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D16669
llvm-svn: 259053
r256763 had promoteLoopAccessesToScalars check for the existence of a
catchswitch when the exit blocks were populated but
promoteLoopAccessesToScalars may be called with a prepopulated set of
exit blocks which would also need to be checked.
This fixes PR26019.
llvm-svn: 256788
We had two bugs here:
- We might try to sink into a catchswitch, causing verifier failures.
- We will succeed in sinking into a cleanuppad but we didn't update the
funclet operand bundle.
This fixes PR26000.
llvm-svn: 256728
This is fix for PR24059.
When we are hoisting instruction above some condition it may turn out
that metadata on this instruction was control dependant on the condition.
This metadata becomes invalid and we need to drop it.
This patch should cover most obvious places of speculative execution (which
I have found by greping isSafeToSpeculativelyExecute). I think there are more
cases but at least this change covers the severe ones.
Differential Revision: http://reviews.llvm.org/D14398
llvm-svn: 252604
Remove remaining `ilist_iterator` implicit conversions from
LLVMScalarOpts.
This change exposed some scary behaviour in
lib/Transforms/Scalar/SCCP.cpp around line 1770. This patch changes a
call from `Function::begin()` to `&Function::front()`, since the return
was immediately being passed into another function that takes a
`Function*`. `Function::front()` started to assert, since the function
was empty. Note that `Function::end()` does not point at a legal
`Function*` -- it points at an `ilist_half_node` -- so the other
function was getting garbage before. (I added the missing check for
`Function::isDeclaration()`.)
Otherwise, no functionality change intended.
llvm-svn: 250211
We know that an argmemonly function can only access memory pointed to by it's pointer arguments. Rather than needing to consider all possible stores as aliasing (as we do for a readonly function), we can only consider the aliasing of the pointer arguments.
Note that this change only addresses hoisting. I'm thinking about how to address speculation safety as well, but that will be a different change.
FYI, argmemonly disallows accessing memory through non-pointer typed arguments.
Differential Revision: http://reviews.llvm.org/D12771
llvm-svn: 248220
with the new pass manager, and no longer relying on analysis groups.
This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:
- FunctionAAResults is a type-erasing alias analysis results aggregation
interface to walk a single query across a range of results from
different alias analyses. Currently this is function-specific as we
always assume that aliasing queries are *within* a function.
- AAResultBase is a CRTP utility providing stub implementations of
various parts of the alias analysis result concept, notably in several
cases in terms of other more general parts of the interface. This can
be used to implement only a narrow part of the interface rather than
the entire interface. This isn't really ideal, this logic should be
hoisted into FunctionAAResults as currently it will cause
a significant amount of redundant work, but it faithfully models the
behavior of the prior infrastructure.
- All the alias analysis passes are ported to be wrapper passes for the
legacy PM and new-style analysis passes for the new PM with a shared
result object. In some cases (most notably CFL), this is an extremely
naive approach that we should revisit when we can specialize for the
new pass manager.
- BasicAA has been restructured to reflect that it is much more
fundamentally a function analysis because it uses dominator trees and
loop info that need to be constructed for each function.
All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.
The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.
This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.
Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.
One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.
Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.
Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.
Differential Revision: http://reviews.llvm.org/D12080
llvm-svn: 247167
This change makes ScalarEvolution a stand-alone object and just produces
one from a pass as needed. Making this work well requires making the
object movable, using references instead of overwritten pointers in
a number of places, and other refactorings.
I've also wired it up to the new pass manager and added a RUN line to
a test to exercise it under the new pass manager. This includes basic
printing support much like with other analyses.
But there is a big and somewhat scary change here. Prior to this patch
ScalarEvolution was never *actually* invalidated!!! Re-running the pass
just re-wired up the various other analyses and didn't remove any of the
existing entries in the SCEV caches or clear out anything at all. This
might seem OK as everything in SCEV that can uses ValueHandles to track
updates to the values that serve as SCEV keys. However, this still means
that as we ran SCEV over each function in the module, we kept
accumulating more and more SCEVs into the cache. At the end, we would
have a SCEV cache with every value that we ever needed a SCEV for in the
entire module!!! Yowzers. The releaseMemory routine would dump all of
this, but that isn't realy called during normal runs of the pipeline as
far as I can see.
To make matters worse, there *is* actually a key that we don't update
with value handles -- there is a map keyed off of Loop*s. Because
LoopInfo *does* release its memory from run to run, it is entirely
possible to run SCEV over one function, then over another function, and
then lookup a Loop* from the second function but find an entry inserted
for the first function! Ouch.
To make matters still worse, there are plenty of updates that *don't*
trip a value handle. It seems incredibly unlikely that today GVN or
another pass that invalidates SCEV can update values in *just* such
a way that a subsequent run of SCEV will incorrectly find lookups in
a cache, but it is theoretically possible and would be a nightmare to
debug.
With this refactoring, I've fixed all this by actually destroying and
recreating the ScalarEvolution object from run to run. Technically, this
could increase the amount of malloc traffic we see, but then again it is
also technically correct. ;] I don't actually think we're suffering from
tons of malloc traffic from SCEV because if we were, the fact that we
never clear the memory would seem more likely to have come up as an
actual problem before now. So, I've made the simple fix here. If in fact
there are serious issues with too much allocation and deallocation,
I can work on a clever fix that preserves the allocations (while
clearing the data) between each run, but I'd prefer to do that kind of
optimization with a test case / benchmark that shows why we need such
cleverness (and that can test that we actually make it faster). It's
possible that this will make some things faster by making the SCEV
caches have higher locality (due to being significantly smaller) so
until there is a clear benchmark, I think the simple change is best.
Differential Revision: http://reviews.llvm.org/D12063
llvm-svn: 245193
around a DataLayout interface in favor of directly querying DataLayout.
This wrapper specifically helped handle the case where this no
DataLayout, but LLVM now requires it simplifynig all of this. I've
updated callers to directly query DataLayout. This in turn exposed
a bunch of places where we should have DataLayout readily available but
don't which I've fixed. This then in turn exposed that we were passing
DataLayout around in a bunch of arguments rather than making it readily
available so I've also fixed that.
No functionality changed.
llvm-svn: 244189