This is another step towards getting rid of dyn_castNotVal,
so we can recommit:
https://reviews.llvm.org/rL300977
As the tests show, we were missing the lshr case for constants
and both ashr/lshr vector splat folds. The ashr case with constant
was being performed inefficiently in 2 steps. It's also possible
there was a latent bug in that case because we can't do that fold
if the constant is positive:
http://rise4fun.com/Alive/Bge
llvm-svn: 302465
Summary:
An llvm.dbg.declare of a static alloca is always added to the
MachineFunction dbg variable map, so these values are entirely
redundant. They survive all the way through codegen to be ignored by
DWARF emission.
Effectively revert r113967
Two bugpoint-reduced test cases from 2012 broke as a result of this
change. Despite my best efforts, I haven't been able to rewrite the test
case using dbg.value. I'm not too concerned about the lost coverage
because these were reduced from the test-suite, which we still run.
Reviewers: aprantl, dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32920
llvm-svn: 302461
Previously type visitation was done strictly sequentially, and
TypeIndexes were computed by incrementing the TypeIndex of the
last visited record. This works fine for situations like dumping,
but not when you want to visit types in random order. For example,
in a debug session someone might lookup a symbol by name, find that
it has TypeIndex 10,000 and then want to go straight to TypeIndex
10,000.
In order to make this work, the visitation framework needs a mode
where it can plumb TypeIndices through the callback pipeline. This
patch adds such a mode. In doing so, it is necessary to provide
an alternative implementation of TypeDatabase that supports random
access, so that is done as well.
Nothing actually uses these random access capabilities yet, but
this will be done in subsequent patches.
Differential Revision: https://reviews.llvm.org/D32928
llvm-svn: 302454
This fixes PR32550, in a way that does not imply running the greedy
mode at O0.
The fix consists in checking if a load is used by any floating point
instruction and if yes, we return a default mapping with FPR instead
of GPR.
llvm-svn: 302453
In r292478, we changed the order of the enum that is referenced by
PMI_FirstXXX. This had the side effect of changing the cost of the
mapping of all the loads, instead of just the FPRs ones.
Reinstate the higher cost for all but GPR loads.
Note: This did not have any external visible effects:
- For Fast mode, the cost would have been higher, but we don't care
because we don't try to use alternative mappings.
- For Greedy mode, the higher cost of the GPR loads, would have
triggered the use of the supposedly alternative mapping, that
would be in fact the same GPR mapping but with a lower cost.
llvm-svn: 302452
Statistic compile to always be 0 in release build so this compare would always return false. And in the debug builds Statistic are global variables and remember their values across pass runs. So this compare returns true anytime the pass runs after the first time it modifies something.
This was found after reviewing all usages of comparison operators on a Statistic object. We had some internal code that did a compare with a statistic that caused a mismatch in output between debug and release builds. So we did an audit out of paranoia.
llvm-svn: 302450
Transforms/IndVarSimplify/2011-10-27-lftrnull will fail if this regresses.
Transforms/GVN/PRE/2011-06-01-NonLocalMemdepMiscompile.ll has been changed to still test what it was
trying to test.
llvm-svn: 302446
This patch uses KnownOnes of the input of ctlz/cttz to bound the value that can be returned from these intrinsics. This makes these intrinsics more similar to the handling for ctpop which already uses known bits to produce a similar bound.
Differential Revision: https://reviews.llvm.org/D32521
llvm-svn: 302444
The code following this one already considers every possible insertion
point for orphan sections, there is no point in sorting them before.
llvm-svn: 302441
This introduces a new interface for computeKnownBits that returns the KnownBits object instead of requiring it to be pre-constructed and passed in by reference.
This is a much more convenient interface as it doesn't require the caller to figure out the BitWidth to pre-construct the object. It's so convenient that I believe we can use this interface to remove the special ComputeSignBit flavor of computeKnownBits.
As a step towards that idea, this patch replaces all of the internal usages of ComputeSignBit with this new interface. As you can see from the patch there were a couple places where we called ComputeSignBit which really called computeKnownBits, and then called computeKnownBits again directly. I've reduced those places to only making one call to computeKnownBits. I bet there are probably external users that do it too.
A future patch will update the external users and remove the ComputeSignBit interface. I'll also working on moving more locations to the KnownBits returning interface for computeKnownBits.
Differential Revision: https://reviews.llvm.org/D32848
llvm-svn: 302437
In C typos in arguments in a call of an overloadable function lead
to a failure of construction of CallExpr and following recovery does
not handle created delayed typos. This causes an assertion fail in
Sema::~Sema since Sema::DelayedTypos remains not empty.
The patch fixes that behavior by handling a call with arguments
having dependant types in the way that C++ does.
Differential Revision: https://reviews.llvm.org/D31764
Patch by Dmitry Borisenkov!
llvm-svn: 302435
Summary:
Minor refactoring of foldIdentityShuffles() which allows the removal of a
ConstantDataVector::get() in SimplifyShuffleVectorInstruction.
Reviewers: spatel
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32955
Conflicts:
lib/Analysis/InstructionSimplify.cpp
llvm-svn: 302433
The patch makes the check treat binary conditional operator (`x ?: y`), `while`
and regular `for` loops as conditional statements for the purpose of
AllowConditional*Cast options.
llvm-svn: 302431
Summary:
And also enable it by default to be consistent with e.g.
modernize-use-using.
This helps e.g. when running this check on cppunit client code where the
macro is provided by the system, so there is no easy way to modify it.
Reviewers: alexfh, malcolm.parsons
Reviewed By: malcolm.parsons
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D32945
llvm-svn: 302429
DontAlign
This converts the clang-format option AlignEscapedNewlinesLeft from a
boolean to an enum, named AlignEscapedNewlines, with options Left (prev.
true), Right (prev. false), and a new option DontAlign.
When set to DontAlign, the backslashes are placed just after the last token in each line:
#define EXAMPLE \
do { \
int x = aaaaa; \
int b; \
int dddddddddd; \
} while (0)
Patch by jtbandes. Thank you!
llvm-svn: 302428
modernize-use-equals-delete is extremely noisy in code using
DISALLOW_COPY_AND_ASSIGN-style macros and there's no easy way to automatically
fix the warning when macros are in play.
llvm-svn: 302425
Currently combineLogicBlendIntoPBLENDV can only match ASHR to detect sign splatting of a bit mask, this patch generalises this to use computeNumSignBits instead.
This is a first step in several things we can do to improve PBLENDV support:
* Better matching of X86ISD::ANDNP patterns.
* Handle floating point cases.
* Better vector and bitcast support in computeNumSignBits.
* Recognise that PBLENDV only uses the sign bit of the mask, we should be able strip away sign splats (ASHR, PCMPGT isNeg tests etc.).
Differential Revision: https://reviews.llvm.org/D32953
llvm-svn: 302424
Previously, the force includes would complain about a missing _DEBUG symbol.
Now we dump macros before adding the force includes to the command line.
llvm-svn: 302421
Summary:
Following up on Sanjay's suggetion in D32955, move this functionality
into ShuffleVectornstruction.
Reviewers: spatel, RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32956
llvm-svn: 302420
This patch adds support for the the LightWeight Profiling (LWP) instructions which are available on all AMD Bulldozer class CPUs (bdver1 to bdver4).
Differential Revision: https://reviews.llvm.org/D32770
llvm-svn: 302418
Multiple ldr pseudoinstructions with the same constant value will
reuse the same constant pool entry. However, if the constant pool
is explicitly flushed with a .ltorg directive, we should not try
to reference constants in the previous pool any longer, since they
may be out of range.
This fixes assembling hand-written assembler source which repeatedly
loads the same constant value, across a binary size larger than the
pc-relative fixup range for ldr instructions (4096 bytes). Such
assembler source already uses explicit .ltorg instructions to emit
constant pools with regular intervals. However if we try to reuse
constants emitted in earlier pools, they end up out of range.
This makes the output of the testcase match what binutils gas does
(prior to this patch, it would fail to assemble).
Differential Revision: https://reviews.llvm.org/D32847
llvm-svn: 302416
This is PR32437.
DF_STATIC_TLS
If set in a shared object or executable, this flag instructs the
dynamic linker to reject attempts to load this file dynamically.
It indicates that the shared object or executable contains code
using a static thread-local storage scheme. Implementations need
not support any form of thread-local storage.
Patch checks if IE/LE relocations were used to check if code uses
static model. If so it sets the DF_STATIC_TLS flag.
Differential revision: https://reviews.llvm.org/D32354
llvm-svn: 302414