The code is tested to work with latest clang, GNU and Intel compiler. The implementation
is optimized for low overhead when no tool is attached shifting the cost to execution with
tool attached.
This patch does not implement OMPT for libomptarget.
Patch by Simon Convent and Joachim Protze
Differential Revision: https://reviews.llvm.org/D38185
llvm-svn: 317085
Previous differencials D23305-D23310 changed task frame information management only for the kmp interface, but not for the whole gomp interface. This broke some testcases when building with gcc.
This patch fixes the broken task frame information for the gomp interface.
Patch by Joachim Protze!
Differential Revision: https://reviews.llvm.org/D24502
llvm-svn: 281468
In case, the current team is a serialized team (lwt), the frame information should be written to this data structure.
Before, nested serialized teams would overwrite the same task information.
Patch by Joachim Protze!
Differential Revision: https://reviews.llvm.org/D23310
llvm-svn: 281467
The comment already states, that this function should work similarly as __ompt_get_taskinfo.
The function only looked for lwt entries of the current team, but not when unrolling the parents. This fix aligns the implementation to __ompt_get_taskinfo.
The new test case creates a single theaded team (->lwt) and then a nested active team.
Before the innermost print_id(1) would deliver a different team then the outer print_id(0).
Patch by Joachim Protze!
Differential Revision: https://reviews.llvm.org/D23309
llvm-svn: 281466
The exit address is set when execution of a task is started and should be reset as soon as the execution is finished.
Especially for the asm implementation of __kmp_invoke_microtask, resetting in this call would be painfull, so reset just after the invokation.
The testcase shows the effect of this patch:
Before, the implicit barriers at the end of an implicit task would see an exit address for the implicit task.
This barrier is a task scheduling point. Thus, any explicit task scheduled there would see an exit, but no reenter address for the implicit task.
Patch by Joachim Protze!
Differential Revision: https://reviews.llvm.org/D23307
llvm-svn: 281465
The latest OMPT spec changed the semantic of a tasks reenter frame to be the application frame, that will be entered, when the runtime frame drops.
Before it was the last frame in the runtime. This doesn't work for some gcc execution pathes or even clang generated code for :
Since there is no runtime frame between the executed task and the encountering task.
The test case compares exit and reenter addresses against addresses captured in application code
Patch by Joachim Protze!
Differential Revision: https://reviews.llvm.org/D23305
llvm-svn: 281464
OMPT tests can check for right frame information of tasks:
* parent_task_frame was directly printed as a pointer, but actually points to a struct ompt_frame {void*, void*}
* NULL is printed in the beginning of execution and loaded to FileChecker variable [[NULL]]
* implicit tasks now also print their frame information
* macro to print frame address from application
* print task info for barrier begin
Patch by Joachim Protze!
Differential Revision: https://reviews.llvm.org/D23304
llvm-svn: 281463
For non-serialized parallel regions the master thread issued two callbacks:
The first one in kmp_gsupport.c and the second in __kmp_join_call. Therefore
only trigger the callback in kmp_gsupport.c for serialized parallel regions.
Differential Revision: http://reviews.llvm.org/D16716
llvm-svn: 264264
Some basic checks next to the implementation should futher lower the
possibility to introduce regressions. (Note that this would have catched
the ordering issue fixed in rL258866 and pointed to rL263940.)
The tests are implementation dependent in one point because they assume that
thread ids are assigned in ascending order. This is not defined by the standard
but currently ensured in libomp. We have to think about another way of ordering
the threads should this ever be subject to change...
Note that this isn't aiming at replacing the implementation independent
test-suite at https://github.com/OpenMPToolsInterface/ompt-test-suite!
Differential Revision: http://reviews.llvm.org/D16715
llvm-svn: 264027