to the CodeCompletionTUInfo that is going to be used to get the results.
Previously we would use ASTUnit's CodeCompletionTUInfo which has its own allocator
that will go away when we reparse. That could result in a use-after-free bug when
getting the parent context name from a CodeCompletionString.
Addresses rdar://12568377.
llvm-svn: 168133
- This diverges from gcc, and confuses tools (like dtrace) which track # line
markers as a way to determine which content is in the context of the main
file.
llvm-svn: 168128
width of an enum with negative values in IntRange. Include a test for
-Wtautological-constant-out-of-range-compare where this had manifested.
llvm-svn: 168126
GCC 4.7 reuses stack slots fairly aggressively, which exposes more temporary
lifetime bugs.
No new test, this was caught by the existing CodeGenCXX/mangle-ms-templates.cpp.
llvm-svn: 168124
Separate out the notions of 'has a trivial special member' and 'has a
non-trivial special member', and use them appropriately. These are not
opposites of one another (there might be no special member, or in C++11 there
might be a trivial one and a non-trivial one). The CXXRecordDecl predicates
continue to produce incorrect results, but do so in fewer cases now, and
they document the cases where they might be wrong.
No functionality changes are intended here (they will come when the predicates
start producing the right answers...).
llvm-svn: 168119
In code like this:
void foo() {
bar();
baz();
}
...the location for the call to 'bar()' was being used as a backup location
for the call to 'baz()'. This is fine unless the call to 'bar()' is deemed
uninteresting and that part of the path deleted.
(This looks like a logic error as well, but in practice the only way 'baz()'
could have an invalid location is if the entire body of 'foo()' is
synthesized, meaning the call to 'bar()' will be using the location of the
call to 'foo()' anyway. Nevertheless, the new version better matches the
intent of the code.)
Found by Matt Beaumont-Gay using ASan. Thanks, Matt!
llvm-svn: 168080
This fixes a few cases where we'd emit path notes like this:
+---+
1| v
p = malloc(len);
^ |2
+---+
In general this should make path notes more consistent and more correct,
especially in cases where the leak happens on the false branch of an if
that jumps directly to the end of the function. There are a couple places
where the leak is reported farther away from the cause; these are usually
cases where there are several levels of nested braces before the end of
the function. This still matches our current behavior for when there /is/
a statement after all the braces, though.
llvm-svn: 168070
Also, don't bother to stop tracking symbols in the return value, either.
They are now properly considered live during checkDeadSymbols.
llvm-svn: 168069
Also, don't bother to stop tracking symbols in the return value, either.
They are now properly considered live during checkDeadSymbols.
llvm-svn: 168068
Also, don't bother to stop tracking symbols in the return value, either.
They are now properly considered live during checkDeadSymbols.
llvm-svn: 168067
This allows us to properly remove dead bindings at the end of the top-level
stack frame, using the ReturnStmt, if there is one, to keep the return value
live. This in turn removes the need for a check::EndPath callback in leak
checkers.
This does cause some changes in the path notes for leak checkers. Previously,
a leak would be reported at the location of the closing brace in a function.
Now, it gets reported at the last statement. This matches the way leaks are
currently reported for inlined functions, but is less than ideal for both.
llvm-svn: 168066
to a cc1 -fencode-extended-block-signature and pass it
to cc1 and recognize this option to produce extended block
type signature. // rdar://12109031
llvm-svn: 168063
It may become a dangling pointer if the underlying SmallVector reallocates.
Sadly the testcase is really large and doesn't reduce well because of
SmallVector's reallocation patterns.
Fixes PR14336.
llvm-svn: 168045
more sense anyway - it determines how expressions are codegen'd. It also ensures
that -ffp-contract=fast has the intended effect when compiling LLVM IR.
llvm-svn: 168027
We do this by using the "most recent" good location: if a synthesized
function 'A' calls another function 'B', the path notes for the call to 'B'
will be placed at the same location as the path note for calling 'A'.
Similarly, the call to 'A' will have a note saying "Entered call from...",
and now we just don't emit that (since the user doesn't have a body to look
at anyway).
Previously, we were doing this for the "Calling..." notes, but not for the
"Entered call from..." or "Returning to caller". This caused a crash when
the path entered and then exiting a call within a synthesized body.
<rdar://problem/12657843>
llvm-svn: 168019
type-name is looked up in the context of the complete postfix-expression. Don't
forget to pass the scope into this lookup when the type-name is a template-id;
it might name an alias template which can't be found within the class itself.
Bug spotted by Johannes Schaub on #llvm.
llvm-svn: 168011
BinaryOperator::Opcode. This is bad form, and the behavior of the static_cast
in this case is unspecified according to the standard.
Fixes a warning that showed up from r167992 on self-host.
llvm-svn: 168010
working with preprocessed testcases. This causes source locations in
diagnostics to point at the spelling location instead of the presumed location,
while still keeping the semantic effects of the line directives (entering and
leaving system-header mode, primarily).
llvm-svn: 168004
type conversion between integers. This allows the warning to be more accurate.
Also, turned the warning off in an analyzer test. The relavent test cases
are covered by the tests in Sema.
llvm-svn: 167992
type as written from the ParmVarDecl; it's unclear whether the standard
(C99 6.9.1p10) requires this, but we're following the precedent set by gcc,
and hopefully nobody will ever ask about this again.
PR9559 / <rdar://problem/12621983>.
llvm-svn: 167985
/// \param TemplateParams if non-NULL, the template parameter lists
/// that preceded this declaration. In this case, the declaration is a
/// template declaration, out-of-line definition of a template, or an
/// explicit template specialization. When NULL, the declaration is an
/// explicit template instantiation.
///
/// \param TemplateLoc when TemplateParams is NULL, the location of
/// the 'template' keyword that indicates that we have an explicit
/// template instantiation.
llvm-svn: 167982
non-trivial if they would not call a move operation, even if they would in fact
call a trivial copy operation. A proper fix is to follow, but this small
directed fix is intended for porting to the 3.2 release branch.
llvm-svn: 167920
and we resolve it to a specific function based on the type which it's used as,
don't forget to mark it as referenced.
Fixes a regression introduced in r167514.
llvm-svn: 167918
* getMostSpecialized()
/// \param Index if non-NULL and the result of this function is non-nULL,
/// receives the index corresponding to the resulting function template
/// specialization.
* DeduceTemplateArguments()
/// \param Name the name of the function being called. This is only significant
/// when the function template is a conversion function template, in which
/// case this routine will also perform template argument deduction based on
/// the function to which
llvm-svn: 167909