Added omp.sections and omp.section operation according to the
section 2.8.1 of OpenMP Standard 5.0.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D110844
[NFC] This patch fixes URLs containing "master". Old URLs were either broken or
redirecting to the new URL.
Reviewed By: #libc, ldionne, mehdi_amini
Differential Revision: https://reviews.llvm.org/D113186
This commit separates the bufferization from the bufferization pass in Linalg. This allows other dialects to use ComprehensiveBufferize more easily.
This commit mainly moves files to a new directory and adds a new build target.
Differential Revision: https://reviews.llvm.org/D112989
AllocationCallbacks functions allocate/deallocate only. They no longer set the insertion point.
This is in preparation of decoupling ComprehensiveBufferize from the Linalg dialect.
Differential Revision: https://reviews.llvm.org/D112991
Move dialect-specific and analysis-specific function out of BufferizationAliasInfo. BufferizationAliasInfo's only job now is to keep track of aliases.
This is in preparation of futher decoupling ComprehensiveBufferize from various dialects.
Differential Revision: https://reviews.llvm.org/D112992
By default, OpResult buffers are writable. But there are ops (e.g., ConstantOp) for which this is not the case.
The purpose of this commit is to further decouple Comprehensive Bufferize from the Standard dialect.
Differential Revision: https://reviews.llvm.org/D112908
This in preparation of decoupling BufferizableOpInterface, Comprehensive Bufferize and dialects.
The goal of this CL is to make `getResultBuffer` (and other `bufferize` functions) independent of `LinalgOps`.
Differential Revision: https://reviews.llvm.org/D112907
These two methods are redundant and removed:
* `bufferizesToAliasOnly`: If not `bufferizesToMemoryRead` and not `bufferizesToMemoryWrite` but `getAliasingOpResult` returns a non-null value, we know that this OpOperand is alias-only. This method now has a default implementation and does not have to be implemented.
* `getInplaceableOpResult`: The analysis does not differentiate between "inplaceable" and "aliasing". The only thing that matters is whether or not OpOperand and OpResult are aliasing. That is the key property that makes buffer copies necessary.
Differential Revision: https://reviews.llvm.org/D112902
- String binary search does 1 less string comparison
- Identifier linear scan on large attribute list is switched to string binary search
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D112970
This allows for external users of Comprehensive Bufferize to specify their own InitTensorOp elimination procedures.
Differential Revision: https://reviews.llvm.org/D112686
The main benefits of this change are faster access to operands
(no need to compute the offset, as it is now right after the
operation), simpler code(no need to manage a lot of the "is the
operand storage trailing" logic we had to before). The major
downside to this though, is that operand holding operations now
grow in size by 1 word (as no matter how we do this change, there
will need to be some additional book keeping).
Differential Revision: https://reviews.llvm.org/D111695
A quick grep for NDEBUG in MLIR revealed a use in DebugActions.h that breaks ABI. This patch changes the use of NDEBUG to LLVM_ENABLE_ABI_BREAKING_CHECKS which has the advantage of being independent of whether clients build their own app in debug or release as it is purely dependant on how MLIR itself was built.
Differential Revision: https://reviews.llvm.org/D113088
- Provide the operator overloads for constructing (semi-)affine expressions in
Python by combining existing expressions with constants.
- Make AffineExpr, AffineMap and IntegerSet hashable in Python.
- Expose the AffineExpr composition functionality.
Reviewed By: gysit, aoyal
Differential Revision: https://reviews.llvm.org/D113010
The current setup of LinalgTransformationFilter allows a
transformation to trigger when either
1) The StringAttr is not set and no filter identifier is specified.
2) The StringAttr is set and its value matches (one of) the provided
identifier.
This misses the case where the transformation should trigger either
when the attribute is not set or its value matches (one of) the
provided identifier. Since `Identifier` does not allow empty strings,
add a boolean option to match when the attribute is not set. This
option is by default off.
Differential Revision: https://reviews.llvm.org/D113057
The 2-D case can be rewritten to generate quite fewer instructions and a single vector.shuffle which seems to provide a nice performance boost.
Add this arrow to our quiver by exposing it with a new vector transform option.
Differential Revision: https://reviews.llvm.org/D113062
We'd like to take a progressive approach towards Fconvolution op
CodeGen, by 1) tiling it to fit compute hierarchy first, and then
2) tiling along window dimensions with size 1 to reduce the problem
to be matmul-like. After that, we can 3) downscale high-D convolution
ops to low-D by removing the size-1 window dimensions. The final
step would be 4) vectorizing the low-D convolution op directly.
We have patterns for 1), 2), and 4). This commit adds a pattern for
3) for `linalg.conv_2d_nhwc_hwcf` ops as a starter. Supporting other
high-D convolution ops should be similar and mechanical.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D112928
Symbol tables are a largely useful top-level IR construct, for example, they
make it easy to access functions in a module by name instead of traversing the
list of module's operations to find the corresponding function.
Depends On D112886
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D112821
Inserting a symbol into a SymbolTable may lead to the name of the symbol being
changed in order to ensure uniqueness of symbol names in the table. Return this
new name to spare the caller the need to extract it from the symbol operation.
Depends On D112700
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D112886
This commit moves parts of the existing bufferization code into external op interface implementations. Furthermore, Comprehensive Bufferize is adapted to use the new interface.
Future commits will decouple the interface and its op implementations from Comprehensive Bufferize and the Linalg dialect, as well as split them into multiple files with their own build targets. This commit leaves the file structure and build rules mostly unchanged.
Differential Revision: https://reviews.llvm.org/D112900
This commit adds a new op interface: BufferizableOpInterface. In the future, ops that implement this interface can be bufferized using Comprehensive Bufferize.
Note: The interface methods of this interface correspond to the "op interface" in ComprehensiveBufferize.cpp.
Differential Revision: https://reviews.llvm.org/D112974
In order to support fusion with mma matrix type we need to be able to
execute elementwise operations on them. This add an op to be able to
support some basic elementwise operations. This is a is not a full
solution as it only supports a limited scope or operations. Ideally we would
want to be able to fuse with more kind of operations.
Differential Revision: https://reviews.llvm.org/D112857
wmma intrinsics have a large number of combinations, ideally we want to be able
to target all the different variants. To avoid a combinatorial explosion in the
number of mlir op we use attributes to represent the different variation of
load/store/mma ops. We also can generate with tablegen helpers to know which
combinations are available. Using this we can avoid having too hardcode a path
for specific shapes and can support more types.
This patch also adds boiler plates for tf32 op support.
Differential Revision: https://reviews.llvm.org/D112689
This makes the class usable with types that do not provide their own operator<.
Update MLIR Linalg ComprehensiveBufferize to take advantage of the new template param.
Differential Revision: https://reviews.llvm.org/D112052
Provide support for removing an operation from the block that contains it and
moving it back to detached state. This allows for the operation to be moved to
a different block, a common IR manipulation for, e.g., module merging.
Also fix a potential one-past-end iterator dereference in Operation::moveAfter
discovered in the process.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D112700
This patch reorders mergeLocalIds usage to merge locals only after number of
dimensions and symbols are same. This does not change any functionality
because it does not matter in what order identifiers are merged, since
the reason to do it is to ensure that two FACs are aligned.
The order ensured in this patch simplifies a subsequent patch to improve
mergeLocalIds which requires dimensions and symbols to be aligned.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D112841
Add a strategy pass that pads and hoists after tiling and fusion.
Depends On D112412
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D112480
Adding a padding and hoisting pattern, a test pass, and tests. The patch prepares the split of tiling/fusion and padding.
Depends On D112255
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D112412
InsertionGuards move constructor is currently the compiler synthesized implementation which is very bug prone. A move constructed InsertionGuard will get the same builder and insertion point as the one it is constructed from, leading to insertion point being restored twice. This can even happen in non obvious situations on some compilers, such as when returning a move constructible struct from a function.
This patch fixes the issue by properly implementing the move constructor. An InsertionGuard that was used to move construct another InsertionGuard is simply inactive and will not restore the insertion point.
I chose to explicitly delete the move assign operator as its semantics are not clear cut. If one were to strictly follow the rule of 5, you'd have to restore the insertion point before then taking ownership of the others guards fields. I believe that to be rather confusing and/or surprising however. One may still get such semantics using llvm::Optional or std::optional and the emplace method if really needed.
Differential Revision: https://reviews.llvm.org/D112749
Adapt hoistPaddingOnTensors to leave replacing and erasing the old pad tensor operation to the caller. This change makes the function pattern friendly.
Depends On D112003
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D112255
Adapt the rewriteAsPaddedOp method to use the OpBuilder instead of the PatterRewriter.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D112003