substitution failure, allow a flag to be set on the Diagnostic object,
to mark it as 'causes substitution failure'.
Refactor Diagnostic.td and the tablegen to use an enum for SFINAE behavior
rather than a bunch of flags.
llvm-svn: 194444
which we don't think can't have one, only allow it in the tiny number of
attributes which opts into this weird parse rule.
I've manually checked that the handlers for all these attributes can in fact
cope with an identifier as the argument. This is still somewhat terrible; we
should move more fully towards picking the parsing rules based on the
attribute, and make the Parse -> Sema interface more type-safe.
llvm-svn: 193295
that a function can be called in. This reduced the total number of annotations
needed and makes writing more complicated behaviour less burdensome.
Patch by chriswails@gmail.com.
llvm-svn: 191983
When running a make-based command, SATestBuild tries to append a -jN flag
with an appropriate N to run the build in parallel. However, it failed
to take into account that each line read includes a trailing newline
(unless it is the last line of a file without a trailing newline), which
resulted in the "-jN" appearing on a line on its own.
llvm-svn: 190164
The individual group and subgroups tables are now two large tables. The option table stores an index into these two tables instead of pointers. This reduces the size of the options tabe since it doesn't need to store pointers. It also reduces the number of relocations needed.
My build shows this reducing DiagnosticsIDs.o and the clang binary by ~20.5K. It also removes ~400 relocation entries from DiagnosticIDs.o.
llvm-svn: 189438
Patch by Ana Pazos
- Completed implementation of instruction formats:
AdvSIMD three same
AdvSIMD modified immediate
AdvSIMD scalar pairwise
- Completed implementation of instruction classes
(some of the instructions in these classes
belong to yet unfinished instruction formats):
Vector Arithmetic
Vector Immediate
Vector Pairwise Arithmetic
- Initial implementation of instruction formats:
AdvSIMD scalar two-reg misc
AdvSIMD scalar three same
- Intial implementation of instruction class:
Scalar Arithmetic
- Initial clang changes to support arm v8 intrinsics.
Note: no clang changes for scalar intrinsics function name mangling yet.
- Comprehensive test cases for added instructions
To verify auto codegen, encoding, decoding, diagnosis, intrinsics.
llvm-svn: 187568
This will prevent the tests from running on normal make check. You will need to
actually pass in --param run_long_tests=true to LIT in order to run these.
llvm-svn: 184784
The CMake build was still using it because I forgot to s/CLANG/LLVM/ in
the tablegen() call. The Makefile build is already using llvm-tblgen.
llvm-svn: 184192
The Logs directory isn't used for testing, so it's filtered out ahead of
time. However, there's then no reason to include it in version control at
all. Don't error if it's not present.
llvm-svn: 183689
These intrinsics use the __builtin_shuffle() function to extract the
low and high half, respectively, of a 128-bit NEON vector. Currently,
they're defined to use bitcasts to simplify the emitter, so we get code
like:
uint16x4_t vget_low_u32(uint16x8_t __a) {
return (uint32x2_t) __builtin_shufflevector((int64x2_t) __a,
(int64x2_t) __a,
0);
}
While this works, it results in those bitcasts going all the way through
to the IR, resulting in code like:
%1 = bitcast <8 x i16> %in to <2 x i64>
%2 = shufflevector <2 x i64> %1, <2 x i64> undef, <1 x i32>
%zeroinitializer
%3 = bitcast <1 x i64> %2 to <4 x i16>
We can instead easily perform the operation directly on the input vector
like:
uint16x4_t vget_low_u16(uint16x8_t __a) {
return __builtin_shufflevector(__a, __a, 0, 1, 2, 3);
}
Not only is that much easier to read on its own, it also results in
cleaner IR like:
%1 = shufflevector <8 x i16> %in, <8 x i16> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
This is both easier to read and easier for the back end to reason
about effectively since the operation is obfuscating the source with
bitcasts.
rdar://13894163
llvm-svn: 181865
This change partly addresses a heinous problem we have with the
parsing of attribute arguments that are a lone identifier. Previously,
we would end up parsing the 'align' attribute of this as an expression
"(Align)":
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align((Align)))) char storage[Size];
};
while this would parse as a "parameter name" 'Align':
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align(Align))) char storage[Size];
};
The code that handles the alignment attribute would completely ignore
the parameter name, so the while the first of these would do what's
expected, the second would silently be equivalent to
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align)) char storage[Size];
};
i.e., use the maximal alignment rather than the specified alignment.
Address this by sniffing the "Args" provided in the TableGen
description of attributes. If the first argument is "obviously"
something that should be treated as an expression (rather than an
identifier to be matched later), parse it as an expression.
Fixes <rdar://problem/13700933>.
llvm-svn: 180973
This change partly addresses a heinous problem we have with the
parsing of attribute arguments that are a lone identifier. Previously,
we would end up parsing the 'align' attribute of this as an expression
"(Align)":
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align((Align)))) char storage[Size];
};
while this would parse as a "parameter name" 'Align':
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align(Align))) char storage[Size];
};
The code that handles the alignment attribute would completely ignore
the parameter name, so the while the first of these would do what's
expected, the second would silently be equivalent to
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align)) char storage[Size];
};
i.e., use the maximal alignment rather than the specified alignment.
Address this by sniffing the "Args" provided in the TableGen
description of attributes. If the first argument is "obviously"
something that should be treated as an expression (rather than an
identifier to be matched later), parse it as an expression.
Fixes <rdar://problem/13700933>.
llvm-svn: 180970