Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11079
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 242385
It is mandatory to specify a comdat in order to receive comdat semantics
for a symbol. We were previously getting this wrong in -function-sections
mode; linker-weak symbols were being emitted in a selectany comdat. This
change causes such symbols to use a noduplicates comdat instead, fixing
the inconsistency.
Also correct an inaccuracy in the docs.
Differential Revision: http://reviews.llvm.org/D10828
llvm-svn: 241103
This change unifies how LTOModule and the backend obtain linker flags
for globals: via a new TargetLoweringObjectFile member function named
emitLinkerFlagsForGlobal. A new function LTOModule::getLinkerOpts() returns
the list of linker flags as a single concatenated string.
This change affects the C libLTO API: the function lto_module_get_*deplibs now
exposes an empty list, and lto_module_get_*linkeropts exposes a single element
which combines the contents of all observed flags. libLTO should never have
tried to parse the linker flags; it is the linker's job to do so. Because
linkers will need to be able to parse flags in regular object files, it
makes little sense for libLTO to have a redundant mechanism for doing so.
The new API is compatible with the old one. It is valid for a user to specify
multiple linker flags in a single pragma directive like this:
#pragma comment(linker, "/defaultlib:foo /defaultlib:bar")
The previous implementation would not have exposed
either flag via lto_module_get_*deplibs (as the test in
TargetLoweringObjectFileCOFF::getDepLibFromLinkerOpt was case sensitive)
and would have exposed "/defaultlib:foo /defaultlib:bar" as a single flag via
lto_module_get_*linkeropts. This may have been a bug in the implementation,
but it does give us a chance to fix the interface.
Differential Revision: http://reviews.llvm.org/D10548
llvm-svn: 241010
This create a MCSymbolELF class and moves SymbolSize since only ELF
needs a size expression.
This reduces the size of MCSymbol from 56 to 48 bytes.
llvm-svn: 238801
This starts merging MCSection and MCSectionData.
There are a few issues with the current split between MCSection and
MCSectionData.
* It optimizes the the not as important case. We want the production
of .o files to be really fast, but the split puts the information used
for .o emission in a separate data structure.
* The ELF/COFF/MachO hierarchy is not represented in MCSectionData,
leading to some ad-hoc ways to represent the various flags.
* It makes it harder to remember where each item is.
The attached patch starts merging the two by moving the alignment from
MCSectionData to MCSection.
Most of the patch is actually just dropping 'const', since
MCSectionData is mutable, but MCSection was not.
llvm-svn: 237936
This allows the compiler/assembly programmer to switch back to a
section. This in turn fixes the bootstrap failure on powerpc (tested
on gcc110) without changing the ppc codegen at all.
I will try to cleanup the various getELFSection overloads in a followup patch.
Just using a default argument now would lead to ambiguities.
llvm-svn: 234099
COFF COMDATs (for selection kinds other than 'select any') require at
least one non-section symbol in the symbol table.
Satisfy this by morally enhancing the linkage from private to internal.
Differential Revision: http://reviews.llvm.org/D8394
llvm-svn: 232570
Summary:
COFF COMDATs (for selection kinds other than 'select any') require at
least one non-section symbol in the symbol table.
Satisfy this by morally enhancing the linkage from private to internal.
Reviewers: rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8374
llvm-svn: 232539
If a function is going in an unique section (because of -ffunction-sections
for example), putting a jump table in .rodata will keep .rodata alive and
that will keep alive any other function that also has a jump table.
Instead, put the jump table in a unique section that is associated with the
function.
llvm-svn: 231961
Add MachO 32-bit (i.e. arm and x86) support for replacing global GOT equivalent
symbol accesses. Unlike 64-bit targets, there's no GOTPCREL relocation, and
access through a non_lazy_symbol_pointers section is used instead.
-- before
_extgotequiv:
.long _extfoo
_delta:
.long _extgotequiv-_delta
-- after
_delta:
.long L_extfoo$non_lazy_ptr-_delta
.section __IMPORT,__pointers,non_lazy_symbol_pointers
L_extfoo$non_lazy_ptr:
.indirect_symbol _extfoo
.long 0
llvm-svn: 231475
This patch unifies the comdat and non-comdat code paths. By doing this
it add missing features to the comdat side and removes the fixed
section assumptions from the non-comdat side.
In ELF there is no one true section for "4 byte mergeable" constants.
We are better off computing the required properties of the section
and asking the context for it.
llvm-svn: 230411
The problem in the original patch was not switching back to .text after printing
an eh table.
Original message:
On ELF, put PIC jump tables in a non executable section.
Fixes PR22558.
llvm-svn: 229586
Add support for having multiple sections with the same name and comdat.
Using this in combination with -ffunction-sections allows LLVM to output a .o
file with mulitple sections named .text. This saves space by avoiding long
unique names of the form .text.<C++ mangled name>.
llvm-svn: 229541
For #pragma comment(linker, ...) MSVC expects the comment string to be quoted, but for #pragma comment(lib, ...) the compiler itself quotes the library name.
Since this distinction disappears by the time the directive reaches the backend, move quoting for the "lib" version to the frontend.
Differential Revision: http://reviews.llvm.org/D7652
llvm-svn: 229375
regressions for LLDB on Linux. Rafael indicated on lldb-dev that we
should just go ahead and revert these but that he wasn't at a computer.
The patches backed out are as follows:
r228980: Add support for having multiple sections with the name and ...
r228889: Invert the section relocation map.
r228888: Use the existing SymbolTableIndex intsead of doing a lookup.
r228886: Create the Section -> Rel Section map when it is first needed.
These patches look pretty nice to me, so hoping its not too hard to get
them re-instated. =D
llvm-svn: 229080
Using this in combination with -ffunction-sections allows LLVM to output a .o
file with mulitple sections named .text. This saves space by avoiding long
unique names of the form .text.<C++ mangled name>.
llvm-svn: 228980
Parts of llvm were not expecting it and we wouldn't print
the entity size of the section.
Given what comdats are used for, having SHF_MERGE sections would be
just a small improvement, so just disable it for now.
Fixes pr22463.
llvm-svn: 228196
Any code creating an MCSectionELF knows ELF and already provides the flags.
SectionKind is an abstraction used by common code that uses a plain
MCSection.
Use the flags to compute the SectionKind. This removes a lot of
guessing and boilerplate from the MCSectionELF construction.
llvm-svn: 227476
ELF has support for sections that can be split into fixed size or
null terminated entities.
Since these sections can be split by the linker, it is not necessary
to split them in codegen.
This reduces the combined .o size in a llvm+clang build from
202,394,570 to 173,819,098 bytes.
The time for linking clang with gold (on a VM, on a laptop) goes
from 2.250089985 to 1.383001792 seconds.
The flip side is the size of rodata in clang goes from 10,926,785
to 10,929,345 bytes.
The increase seems to be because of http://sourceware.org/bugzilla/show_bug.cgi?id=17902.
llvm-svn: 227431
derived classes.
Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.
*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.
llvm-svn: 227113
No change in this commit, but clang was changed to also produce trivial comdats when
needed.
Original message:
Don't create new comdats in CodeGen.
This patch stops the implicit creation of comdats during codegen.
Clang now sets the comdat explicitly when it is required. With this patch clang and gcc
now produce the same result in pr19848.
llvm-svn: 226467
This reverts commit r226173, adding r226038 back.
No change in this commit, but clang was changed to also produce trivial comdats for
costructors, destructors and vtables when needed.
Original message:
Don't create new comdats in CodeGen.
This patch stops the implicit creation of comdats during codegen.
Clang now sets the comdat explicitly when it is required. With this patch clang and gcc
now produce the same result in pr19848.
llvm-svn: 226242
This patch stops the implicit creation of comdats during codegen.
Clang now sets the comdat explicitly when it is required. With this patch clang and gcc
now produce the same result in pr19848.
llvm-svn: 226038
This is affecting the behavior of some ObjC++ / AArch64 test cases on Darwin.
Reverting to get the bots green while I track down the source of the changed
behavior.
llvm-svn: 225311
If a linker directive is already quoted, don't try to quote it again, otherwise it creates a mess.
This pops up in places like:
#pragma comment(linker,"\"/foo bar'\"")
Differential Revision: http://reviews.llvm.org/D6792
llvm-svn: 224998
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
llvm-svn: 223802
A problem with our old behavior becomes observable under x86-64 COFF
when we need a read-only GV which has an initializer which is referenced
using a relocation: we would mark the section as writable. Marking the
section as writable interferes with section merging.
This fixes PR21009.
llvm-svn: 218179