Check the MachinePointerInfo for whether the access is
supposed to be relative to the stack pointer.
No tests because this is used in later commits implementing
calls.
llvm-svn: 303301
Summary:
llvm-pdbdump yaml2pdb used to fail with a misleading error
message ("An I/O error occurred on the file system") if no output file
was specified. This change adds an assert to PDBFileBuilder to check
that an output file name is specified, and makes llvm-pdbdump generate
an output file name based on the input file name if no output file
name is explicitly specified.
Reviewers: amccarth, zturner
Reviewed By: zturner
Subscribers: fhahn, llvm-commits
Differential Revision: https://reviews.llvm.org/D33296
llvm-svn: 303299
We already handled all of the new tests identically, but several
of those went through a lot of unnecessary processing before
getting folded.
Another motivation for grouping these cases together is that
InstCombine needs a similar fold. Currently, it handles the
'not' cases inefficiently which can lead to bugs as described
in the post-commit comments of:
https://reviews.llvm.org/D32143
llvm-svn: 303295
Often you have an array and you just want to use it. With the current
design, you have to first construct a `BinaryByteStream`, and then create
a `BinaryStreamRef` from it. Worse, the `BinaryStreamRef` holds a pointer
to the `BinaryByteStream`, so you can't just create a temporary one to
appease the compiler, you have to actually hold onto both the `ArrayRef`
as well as the `BinaryByteStream` *AND* the `BinaryStreamReader` on top of
that. This makes for very cumbersome code, often requiring one to store a
`BinaryByteStream` in a class just to circumvent this.
At the cost of some added complexity (not exposed to users, but internal
to the library), we can do better than this. This patch allows us to
construct `BinaryStreamReaders` and `BinaryStreamWriters` directly from
source data (e.g. `StringRef`, `MutableArrayRef<uint8_t>`, etc). Not only
does this reduce the amount of code you have to type and make it more
obvious how to use it, but it solves real lifetime issues when it's
inconvenient to hold onto a `BinaryByteStream` for a long time.
The additional complexity is in the form of an added layer of indirection.
Whereas before we simply stored a `BinaryStream*` in the ref, we now store
both a `BinaryStream*` **and** a `std::shared_ptr<BinaryStream>`. When
the user wants to construct a `BinaryStreamRef` directly from an
`ArrayRef` etc, we allocate an internal object that holds ownership over a
`BinaryByteStream` and forwards all calls, and store this in the
`shared_ptr<>`. This also maintains the ref semantics, as you can copy it
by value and references refer to the same underlying stream -- the one
being held in the object stored in the `shared_ptr`.
Differential Revision: https://reviews.llvm.org/D33293
llvm-svn: 303294
Summary: Moving LiveRangeShrink to x86 as this pass is mostly useful for archtectures with great register pressure.
Reviewers: MatzeB, qcolombet
Reviewed By: qcolombet
Subscribers: jholewinski, jyknight, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33294
llvm-svn: 303292
Avoids instructions to pack a vector when the source is really
a scalar being broadcast.
Also be smarter and look for per-component fneg.
Doesn't yet handle scalar from upper half of register
or other swizzles.
llvm-svn: 303291
driver-mode recognition in clang (this is because the sysctl method
always returns one and only one executable path, even for an executable
with multiple links):
Fix DynamicLibraryTest.cpp on FreeBSD and NetBSD
Summary:
After rL301562, on FreeBSD the DynamicLibrary unittests fail, because
the test uses getMainExecutable("DynamicLibraryTests", Ptr), and since
the path does not contain any slashes, retrieving the main executable
will not work.
Reimplement getMainExecutable() for FreeBSD and NetBSD using sysctl(3),
which is more reliable than fiddling with relative or absolute paths.
Also add retrieval of the original argv[] from the GoogleTest framework,
to use as a fallback for other OSes.
Reviewers: emaste, marsupial, hans, krytarowski
Reviewed By: krytarowski
Subscribers: krytarowski, llvm-commits
Differential Revision: https://reviews.llvm.org/D33171
llvm-svn: 303285
We have to check gCrashRecoveryEnabled before using __try.
In other words, SEH works too well and we ended up recovering from
crashes in implicit module builds that we weren't supposed to. Only
libclang is supposed to enable CrashRecoveryContext to allow implicit
module builds to crash.
llvm-svn: 303279
Make sure IRTranslator->MachineIRBuilder->DebugLoc doesn't
outlive the DILocation. Clear it at the end of
IRTranslator::runOnMachineFunction
llvm-svn: 303277
Summary:
It avoids problems when other libraries raise exceptions. In particular,
OutputDebugString raises an exception that the debugger is supposed to
catch and suppress. VEH kicks in first right now, and that is entirely
incorrect.
Unfortunately, GCC does not support SEH, so I've kept the old buggy VEH
codepath around. We could fix it with SetUnhandledExceptionFilter, but
that is not per-thread, so a well-behaved library shouldn't set it.
Reviewers: zturner
Subscribers: llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D33261
llvm-svn: 303274
There is often a lot of boilerplate code required to visit a type
record or type stream. The #1 use case is that you have a sequence
of bytes that represent one or more records, and you want to
deserialize each one, switch on it, and call a callback with the
deserialized record that the user can examine. Currently this
requires at least 6 lines of code:
codeview::TypeVisitorCallbackPipeline Pipeline;
Pipeline.addCallbackToPipeline(Deserializer);
Pipeline.addCallbackToPipeline(MyCallbacks);
codeview::CVTypeVisitor Visitor(Pipeline);
consumeError(Visitor.visitTypeRecord(Record));
With this patch, it becomes one line of code:
consumeError(codeview::visitTypeRecord(Record, MyCallbacks));
This is done by having the deserialization happen internally inside
of the visitTypeRecord function. Since this is occasionally not
desirable, the function provides a 3rd parameter that can be used
to change this behavior.
Hopefully this can significantly reduce the barrier to entry
to using the visitation infrastructure.
Differential Revision: https://reviews.llvm.org/D33245
llvm-svn: 303271
A lot of code is duplicated between the first_last and the
next / prev methods. All of this code can be shared if they
are implemented in terms of find_first_in(Begin, End) etc,
in which case find_first = find_first_in(0, Size) and find_next
is find_first_in(Prev+1, Size), with similar reductions for
the other methods.
Differential Revision: https://reviews.llvm.org/D33104
llvm-svn: 303269
There should be a slight efficiency improvement from handling icmp/fcmp with one matcher and reducing duplicated code.
The larger motivation is that there are questions about how predicate canonicalization is handled, and the refactoring
should make it easier if we want to change any of that behavior.
1. As noted in the code comment, we've chosen 3 of the 16 FCMP preds as not canonical. Why those 3? It goes back to
rL32751 from what I can tell, but I'm not sure if there's a justification for that rule.
2. We currently do not canonicalize integer select conditions. Should we use the same rule that applies to branches
for selects?
3. We currently do canonicalize some FP select conditions, and those rules would conflict with the rule shown here.
Should one or both be changed?
No-functional-change-intended, but adding tests anyway because there's no coverage for most of the predicates.
Differential Revision: https://reviews.llvm.org/D33247
llvm-svn: 303261
Summary:
As of this patch, 1018 out of 3938 rules are currently imported.
Depends on D32275
Reviewers: qcolombet, kristof.beyls, rovka, t.p.northover, ab, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: dberris, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D32278
llvm-svn: 303259
The variables MinGPR/MinG8R were not updated properly when resetting the
offsets, which in the included testcase lead to saving the CR register
in the same location as R30.
This fixes another issue reported in PR26519.
Differential Revision: https://reviews.llvm.org/D33017
llvm-svn: 303257
Summary:
Without this, it's possible to encounter multiple defs for a register.
This is triggered by the current version of D32868 when applied to trunk.
Reviewers: qcolombet, ab, t.p.northover, rovka, kristof.beyls
Reviewed By: qcolombet
Subscribers: llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D32869
llvm-svn: 303253
It only failed on llvm-clang-x86_64-expensive-checks-win, probably
because the TableGen stuff hasn't been regenerated.
Requires a clean build.
llvm-svn: 303252
RelocAddrMap was a pair of <width, address>, where width is relocation size (4/8/x, x < 8),
and width field was never used in code.
Relocations proccessing loop had checks for width field. Does not look like DWARF parser
should do that. There is probably no much sense to validate relocations during proccessing
them in parser.
Patch removes relocation's width relative code from DWARFContext.
Differential revision: https://reviews.llvm.org/D33194
llvm-svn: 303251
When looping through a destination pattern's operands to decide how many
default operands we need to introduce, we used to count the "expanded"
number of operands. So if one default operand would be rendered as 2
values, we'd count it as 2 operands, when in fact it needs to count as
only 1 operand regardless of how many values it expands to.
This turns out to be a problem only in some very specific cases, e.g.
when we have one operand with multiple default values followed by more
operands with default values (see the new test). In such a situation
we'd stop looping before looking at all the operands, and then error out
assuming that we don't have enough default operands to make up the
shortfall.
At the moment this only affects ARM.
The patch removes the loop counting default operands entirely and
assumes that we'll have to introduce values for any default operand that
we find (i.e. we're assuming it cannot be given as a child at all). It
also extracts the code for adding renderers for default operands into a
helper method.
Differential Revision: https://reviews.llvm.org/D33031
llvm-svn: 303240
Summary:
Debug info sections, (or non-SHF_ALLOC sections in general) should be
linked as if their load address was zero to emulate the behavior of the
static linker.
This bug was discovered because it was breaking lldb expression evaluation on
linux.
Reviewers: lhames
Subscribers: aprantl, eugene, clayborg, lldb-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D32899
llvm-svn: 303239
Don't allow -optimize-regalloc=false with -regalloc given for anything other
than 'fast'. The other register allocators depend on the supporting passes
added by addOptimizedRegAlloc().
Reviewers: Quentin Colombet, Matthias Braun
https://reviews.llvm.org/D33181
llvm-svn: 303238
Sorting of AddRecExprs by loop nesting does not make sense since we only invoke
the CompareSCEVComplexity for AddRecExprs that are used by one SCEV. This
guarantees that there is always a dominance relationship between them. This
patch removes the sorting by nesting which is a dead code in current usage of
this function.
Reviewed By: sanjoy
Differential Revision: https://reviews.llvm.org/D33228
llvm-svn: 303235
If we need to spill the result of the PHI instruction, we insert the spill after
all of the PHIs and EHPads, however, in a catchswitch block there is no
room to insert the spill. Make room by splitting away catchswitch into a separate
block.
Before the fix:
catch.dispatch:
%val = phi i32 [ 1, %if.then ], [ 2, %if.else ]
%switch = catchswitch within none [label %catch] unwind label %cleanuppad
After:
catch.dispatch:
%val = phi i32 [ 1, %if.then ], [ 2, %if.else ]
%tok = cleanuppad within none []
; spill goes here
cleanupret from %tok unwind label %catch.dispatch.switch
catch.dispatch.switch:
%switch = catchswitch within none [label %catch] unwind label %cleanuppad
https://reviews.llvm.org/D31846
llvm-svn: 303232
Since we use AddVectoredExceptionHandler, we get notified of
every exception that gets raised by a program. Sometimes these
are not necessarily errors though, and this can be especially
true when linking against a library that we have no control
over, and may raise an exception internally which it intends
to catch.
In particular, the Windows API OutputDebugString does exactly
this. It raises an exception inside of a __try / __except,
giving the debugger a chance to handle the exception to print
the message to the debug console.
But this doesn't interoperate nicely with our vectored exception
handler, which just sees another exception and decides that we
need to terminate the program.
Add a special case for this so that we ignore ODS exceptions
and continue normally.
Note that a better fix is to simply not use vectored exception
handlers and use SEH instead, but given that MinGW doesn't support
SEH, this is the only solution for MinGW.
Differential Revision: https://reviews.llvm.org/D33260
llvm-svn: 303219
The operator-> implementation comes from iterator_facade_base, so it should
just work given that the iterator has a tested operator*. But r302257 showed
that required careful handling of for the const qualifier. This patch ensures
the fix in r302257 doesn't regress.
Differential Revision: https://reviews.llvm.org/D33249
llvm-svn: 303215
We would eventually catch these via demanded bits and computing known bits in InstCombine,
but I think it's better to handle the simple cases as soon as possible as a matter of efficiency.
This fold allows further simplifications based on distributed ops transforms. eg:
%a = lshr i8 %x, 7
%b = or i8 %a, 2
%c = and i8 %b, 1
InstSimplify can directly fold this now:
%a = lshr i8 %x, 7
Differential Revision: https://reviews.llvm.org/D33221
llvm-svn: 303213
CTLZ idiom recognition (r303102).
Summary:
The following case:
i = 1;
if(n)
while (n >>= 1)
i++;
use(i);
Was converted to:
i = 1;
if(n)
i += builtin_ctlz(n >> 1, false);
use(i);
Which is not correct. The patch make it:
i = 1;
if(n)
i += builtin_ctlz(n >> 1, true);
use(i);
From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 303212
Update threshold based on callee's hotness only when BFI is not available.
Otherwise use only callsite's hotness. This makes it easier to reason about
hotness related threshold updates.
Differential revision: https://reviews.llvm.org/D33157
llvm-svn: 303210
Summary:
This fixes pr32392.
The lowering pipeline is:
llvm.ppc.cfence in IR -> PPC::CFENCE8 in isel -> Actual instructions in
expandPostRAPseudo.
The reason why expandPostRAPseudo is chosen is because previous passes
are likely eliminating instructions like cmpw 3, 3 (early CSE) and bne-
7, .+4 (some branch pass(s)).
Differential Revision: https://reviews.llvm.org/D32763
llvm-svn: 303205
ProfileSummaryInfo already checks whether the module has sample profile
in determining profile counts. This will also be useful in inliner to
clean up threshold updates.
llvm-svn: 303204
Summary:
In SelectionDAG, when a store is immediately chained to another store
to the same address, elide the first store as it has no observable
effects. This is causes small improvements dealing with intrinsics
lowered to stores.
Test notes:
* Many testcases overwrite store addresses multiple times and needed
minor changes, mainly making stores volatile to prevent the
optimization from optimizing the test away.
* Many X86 test cases optimized out instructions associated with
associated with va_start.
* Note that test_splat in CodeGen/AArch64/misched-stp.ll no longer has
dependencies to check and can probably be removed and potentially
replaced with another test.
Reviewers: rnk, john.brawn
Subscribers: aemerson, rengolin, qcolombet, jyknight, nemanjai, nhaehnle, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33206
llvm-svn: 303198
The referenced tests are derived from:
https://bugs.llvm.org/show_bug.cgi?id=32791
and:
https://reviews.llvm.org/D33172
The motivation for including negative tests may not be clear, so I'm adding an explanatory comment here.
In the post-commit thread for r303133:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20170515/453793.html
...it was mentioned that we don't want to add redundant tests. This is a valid point. But in this case,
we have a patch under review (D33172) that demonstrates that no existing regression tests are affected by
a proposed code change, but these are. Therefore, I think these tests have value not visible in any
existing regression tests regardless of whether they show a transform.
Differential Revision: https://reviews.llvm.org/D33242
llvm-svn: 303185
Using LIS can be quite expensive, so caching of calculated region
live-ins and pressure is implemented. It does two things:
1. Caches the info for the second stage when we schedule with
decreased target occupancy.
2. Tracks the basic block from top to bottom thus eliminating the
need to scan whole register file liveness at every region split
in the middle of the block.
The scheduling is now done in 3 stages instead of two, with the first
one being really a no-op and only used to collect scheduling regions
as sent by the scheduler driver.
There is no functional change to the current behavior, only compilation
speed is affected. In general computeBlockPressure() could be simplified
if we switch to backward RP tracker, because scheduler sends regions
within a block starting from the last upward. We could use a natural
order of upward tracker to seamlessly change between regions of the same
block, since live reg set of a previous tracked region would become a
live-out of the next region. That however requires fixing upward tracker
to properly account defs and uses of the same instruction as both are
contributing to the current pressure. When we converge on the produced
pressure we should be able to switch between them back and forth. In
addition, backward tracker is less expensive as it uses LIS in recede
less often than forward uses it in advance.
At the moment the worst known case compilation time has improved from 26
minutes to 8.5.
Differential Revision: https://reviews.llvm.org/D33117
llvm-svn: 303184
According to Intel's Optimization Reference Manual for SNB+:
" For LEA instructions with three source operands and some specific situations, instruction latency has increased to 3 cycles, and must
dispatch via port 1:
- LEA that has all three source operands: base, index, and offset
- LEA that uses base and index registers where the base is EBP, RBP,or R13
- LEA that uses RIP relative addressing mode
- LEA that uses 16-bit addressing mode "
This patch currently handles the first 2 cases only.
Differential Revision: https://reviews.llvm.org/D32277
llvm-svn: 303183
This factors register pressure estimation mechanism from the
GCNSchedStrategy into the forward tracker to unify interface
with other strategies and expose it to other interested phases.
Differential Revision: https://reviews.llvm.org/D33105
llvm-svn: 303179
Summary:
RewritePHIs algorithm used in building of CoroFrame inserts a placeholder
```
%placeholder = phi [%val]
```
on every edge leading to a block starting with PHI node with multiple incoming edges,
so that if one of the incoming values was spilled and need to be reloaded, we have a
place to insert a reload. We use SplitEdge helper function to split the incoming edge.
SplitEdge function does not deal with unwind edges comping into a block with an EHPad.
This patch adds an ehAwareSplitEdge function that can correctly split the unwind edge.
For landing pads, we clone the landing pad into every edge block and replace the original
landing pad with a PHI collection the values from all incoming landing pads.
For WinEH pads, we keep the original EHPad in place and insert cleanuppad/cleapret in the
edge blocks.
Reviewers: majnemer, rnk
Reviewed By: majnemer
Subscribers: EricWF, llvm-commits
Differential Revision: https://reviews.llvm.org/D31845
llvm-svn: 303172
Recommit of r303159 "[DWARF] - Use DWARFAddressRange struct instead of uint64_t pair for DWARFAddressRangesVector"
All places were shitched to use DWARFAddressRange now.
Suggested during review of D33184.
llvm-svn: 303163
The information collected when requested by -time-passes is only printed when
llvm_shutdown is called at the moment. This means that when linking against the LTO
library dynamically and using the C interface, it is not possible to see the timing
information, because llvm_shutdown cannot be called. This change modifies the LTO
code generation functions for both regular LTO and thin LTO to explicitly print and
reset the timing information.
I have tested that this works with our proprietary linker. However, as this relies
on a specific method of building and linking against the LTO library, I'm not sure
how or if this can be tested in the LLVM testsuite.
Reviewed by: mehdi_amini
Differential Revision: https://reviews.llvm.org/D32803
llvm-svn: 303152
The existing sorting order in defined CompareSCEVComplexity sorts AddRecExprs
by loop depth, but does not pay attention to dominance of loops. This can
lead us to the following buggy situation:
for (...) { // loop1
op1 = {A,+,B}
}
for (...) { // loop2
op2 = {A,+,B}
S = add op1, op2
}
In this case there is no guarantee that in operand list of S the op2 comes
before op1 (loop depth is the same, so they will be sorted just
lexicographically), so we can incorrectly treat S as a recurrence of loop1,
which is wrong.
This patch changes the sorting logic so that it places the dominated recs
before the dominating recs. This ensures that when we pick the first recurrency
in the operands order, it will be the bottom-most in terms of domination tree.
The attached test set includes some tests that produce incorrect SCEV
estimations and crashes with oldlogic.
Reviewers: sanjoy, reames, apilipenko, anna
Reviewed By: sanjoy
Subscribers: llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D33121
llvm-svn: 303148
This function gives the wrong answer on some non-ELF platforms in some
cases. The function that does the right thing lives in Mangler.h. To try to
discourage people from using this function, give it a different name.
Differential Revision: https://reviews.llvm.org/D33162
llvm-svn: 303134
Shrink-wrapping uses post-dominators to find a restore point that
post-dominates all the uses of CSR / stack.
The way dominator trees are modeled in LLVM today is that unreachable
blocks are not present in a generic dominator tree, so, an unreachable node is
dominated by anything: include/llvm/Support/GenericDomTree.h:467.
Since for post-dominators, a no-return block is considered
"unreachable", calling findNearestCommonDominator on an unreachable node
A and a non-unreachable node B, will return B, which can be false. If we
find such node, we bail out since there is no good restore point
available.
rdar://problem/30186931
llvm-svn: 303130
We don't use section-relative relocations on AArch64, so all symbols must be at
least visible to the linker (i.e. properly global or l_whatever, but not
L_whatever).
llvm-svn: 303118
There's no need (& a bit incorrect) to mask off the high bits of the
register reference when describing a simple bool value.
Reviewers: aprantl
Differential Revision: https://reviews.llvm.org/D31062
llvm-svn: 303117
ARM Neon has native support for half-sized vector registers (64 bits). This
is beneficial for example for 2D and 3D graphics. This patch adds the option
to lower MinVecRegSize from 128 via a TTI in the SLP Vectorizer.
*** Performance Analysis
This change was motivated by some internal benchmarks but it is also
beneficial on SPEC and the LLVM testsuite.
The results are with -O3 and PGO. A negative percentage is an improvement.
The testsuite was run with a sample size of 4.
** SPEC
* CFP2006/482.sphinx3 -3.34%
A pretty hot loop is SLP vectorized resulting in nice instruction reduction.
This used to be a +22% regression before rL299482.
* CFP2000/177.mesa -3.34%
* CINT2000/256.bzip2 +6.97%
My current plan is to extend the fix in rL299482 to i16 which brings the
regression down to +2.5%. There are also other problems with the codegen in
this loop so there is further room for improvement.
** LLVM testsuite
* SingleSource/Benchmarks/Misc/ReedSolomon -10.75%
There are multiple small SLP vectorizations outside the hot code. It's a bit
surprising that it adds up to 10%. Some of this may be code-layout noise.
* MultiSource/Benchmarks/VersaBench/beamformer/beamformer -8.40%
The opt-viewer screenshot can be seen at F3218284. We start at a colder store
but the tree leads us into the hottest loop.
* MultiSource/Applications/lambda-0.1.3/lambda -2.68%
* MultiSource/Benchmarks/Bullet/bullet -2.18%
This is using 3D vectors.
* SingleSource/Benchmarks/Shootout-C++/Shootout-C++-lists +6.67%
Noise, binary is unchanged.
* MultiSource/Benchmarks/Ptrdist/anagram/anagram +4.90%
There is an additional SLP in the cold code. The test runs for ~1sec and
prints out over 2000 lines. This is most likely noise.
* MultiSource/Applications/aha/aha +1.63%
* MultiSource/Applications/JM/lencod/lencod +1.41%
* SingleSource/Benchmarks/Misc/richards_benchmark +1.15%
Differential Revision: https://reviews.llvm.org/D31965
llvm-svn: 303116
This caused PR33053.
Original commit message:
> The new experimental reduction intrinsics can now be used, so I'm enabling this
> for AArch64. We will need this for SVE anyway, so it makes sense to do this for
> NEON reductions as well.
>
> The existing code to match shufflevector patterns are replaced with a direct
> lowering of the reductions to AArch64-specific nodes. Tests updated with the
> new, simpler, representation.
>
> Differential Revision: https://reviews.llvm.org/D32247
llvm-svn: 303115
We were silently ignoring any features we couldn't match up, which led to
errors in an inline asm block missing the conventional "\n\t".
llvm-svn: 303108
Summary:
The following loops should be recognized:
i = 0;
while (n) {
n = n >> 1;
i++;
body();
}
use(i);
And replaced with builtin_ctlz(n) if body() is empty or
for CPUs that have CTLZ instruction converted to countable:
for (j = 0; j < builtin_ctlz(n); j++) {
n = n >> 1;
i++;
body();
}
use(builtin_ctlz(n));
Reviewers: rengolin, joerg
Differential Revision: http://reviews.llvm.org/D32605
From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 303102
verifyMemoryCongruency() filters out trivially dead MemoryDef(s),
as we find them immediately dead, before moving from TOP to a new
congruence class.
This fixes the same problem for PHI(s) skipping MemoryPhis if all
the operands are dead.
Differential Revision: https://reviews.llvm.org/D33044
llvm-svn: 303100
Summary:
All GlobalIndirectSymbol types (not just GlobalAlias) should return
their base object.
Without this patch LTO would warn "Unable to determine comdat of
alias!" for an ifunc.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, llvm-commits
Differential Revision: https://reviews.llvm.org/D33202
llvm-svn: 303096
At O3 we are more willing to increase size if we believe it will improve
performance. The current threshold for tail-duplication of 2 instructions is
conservative, and can be relaxed at O3.
Benchmark results:
llvm test-suite:
6% improvement in aha, due to duplication of loop latch
3% improvement in hexxagon
2% slowdown in lpbench. Seems related, but couldn't completely diagnose.
Internal google benchmark:
Produces 4% improvement on internal google protocol buffer serialization
benchmarks.
Differential-Revision: https://reviews.llvm.org/D32324
llvm-svn: 303084
Follow up to D33147
NVPTXTargetLowering::LowerCall was trusting the default argument values.
Fixes another 17 of the NVPTX '-verify-machineinstrs with EXPENSIVE_CHECKS' errors in PR32146.
Differential Revision: https://reviews.llvm.org/D33189
llvm-svn: 303082
This patch enables fusing dependent AESE/AESMC and AESD/AESIMC
instruction pairs on Cortex-A72, as recommended in the Software
Optimization Guide, section 4.10.
llvm-svn: 303073
Doing this means that if an LEApcrel is used in two places we will rematerialize
instead of generating two MOVs. This is particularly useful for printfs using
the same format string, where we want to generate an address into a register
that's going to get corrupted by the call.
Differential Revision: https://reviews.llvm.org/D32858
llvm-svn: 303054
Doing this lets us hoist it out of loops, and I've also marked it as
rematerializable the same as the thumb1 and thumb2 counterparts.
It looks like it being marked as such was just a mistake, as the commit that
made that change only mentions LEApcrelJT and in thumb1 and thumb2 only the
LEApcrelJT instructions were marked as having side-effects, so it looks like
the intent was to only mark LEApcrelJT as having side-effects but LEApcrel was
accidentally marked as such also.
Differential Revision: https://reviews.llvm.org/D32857
llvm-svn: 303053
I am working on a speedup of building .gdb_index in LLD and
noticed that relocations that are proccessed in DWARFContextInMemory often uses
the same symbol in a row. This patch introduces caching to reduce the relocations
proccessing time.
For benchmark,
I took debug LLC binary objects configured with -ggnu-pubnames and linked it using LLD.
Link time without --gdb-index is about 4,45s.
Link time with --gdb-index: a) Without patch: 19,16s b) With patch: 15,52s
That means time spent on --gdb-index in this configuration is
19,16s - 4,45s = 14,71s (without patch) vs 15,52s - 4,45s = 11,07s (with patch).
Differential revision: https://reviews.llvm.org/D31136
llvm-svn: 303051
Currently, when masked load, store, gather or scatter intrinsics are used, we check in CodeGenPrepare pass if the subtarget support these intrinsics, if not we replace them with scalar code - this is a functional transformation not an optimization (not optional).
CodeGenPrepare pass does not run when the optimization level is set to CodeGenOpt::None (-O0).
Functional transformation should run with all optimization levels, so here I created a new pass which runs on all optimization levels and does no more than this transformation.
Differential Revision: https://reviews.llvm.org/D32487
llvm-svn: 303050
NFC followup to D33147, this explicitly sets all the arguments (instead of relying on the defaults) to SelectionDAG::getMemIntrinsicNode to help identify -verify-machineinstrs issues.
llvm-svn: 303047
Summary:
We were asserting in RegisterBankInfo if RBI.copyCost() returns
UINT_MAX. This is OK for RegBankSelect::Mode::Fast since we only
try one instruction mapping and can't recover from this, but for
RegBankSelect::Mode::Greedy we will be considering multiple
instruction mappings, so we can recover if we see a UNIT_MAX copy
cost.
The copy cost for one pair of register banks in the AMDGPU backend
will be UNIT_MAX, so this patch will prevent AMDGPU tests from
breaking.
Reviewers: ab, qcolombet, t.p.northover, dsanders
Reviewed By: qcolombet
Subscribers: tpr, llvm-commits
Differential Revision: https://reviews.llvm.org/D33144
llvm-svn: 303043
Summary:
This was broken by r302499. Configuring with -DLLVM_BUILD_DOCS=ON would
cause the docs-llvm-man target not to be created.
Reviewers: anemet, beanz
Reviewed By: anemet
Subscribers: llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D33146
llvm-svn: 303042
We were previously silently emitting bogus data in release mode,
making it very hard to diagnose the error, or crashing with an
assert in debug mode. A proper diagnostic is now always emitted
when the value to be emitted is out of range.
llvm-svn: 303041
Summary:
Merge overflow computation for signed add,
appearing both in InstCombine and ValueTracking.
As part of the merge,
cleanup the interface for overflow checks in InstCombine.
Patch by Yoav Ben-Shalom.
Reviewers: craig.topper, majnemer
Reviewed By: craig.topper
Subscribers: takuto.ikuta, llvm-commits
Differential Revision: https://reviews.llvm.org/D32946
llvm-svn: 303029
Replace SelectionDAG::getNode(ISD::SELECT, ...)
and SelectionDAG::getNode(ISD::VSELECT, ...)
with SelectionDAG::getSelect(...)
Saves a few lines of code and in some cases saves the need to explicitly
check the type of the desired node.
llvm-svn: 303024
I noticed the 512-bit lzcnts don't use the X86 specific lookup table code and instead use the EXPAND case in LegalizeDAG. I was toying around with fixing this and noticed it would require compare instructions that generate i1 masks and then converting from mask to vector. Then I noticed that we don't test which compares are used with avx512vl and no avx512cd.
llvm-svn: 303020
Remove an unneeded prefix from the 32-bit command line. Make all the 64-bit triples match. Replace ALL with X64 and remove it from the 32-bit test.
llvm-svn: 303019
Summary:
After rL301562, on FreeBSD the DynamicLibrary unittests fail, because
the test uses getMainExecutable("DynamicLibraryTests", Ptr), and since
the path does not contain any slashes, retrieving the main executable
will not work.
Reimplement getMainExecutable() for FreeBSD and NetBSD using sysctl(3),
which is more reliable than fiddling with relative or absolute paths.
Also add retrieval of the original argv[] from the GoogleTest framework,
to use as a fallback for other OSes.
Reviewers: emaste, marsupial, hans, krytarowski
Reviewed By: krytarowski
Subscribers: krytarowski, llvm-commits
Differential Revision: https://reviews.llvm.org/D33171
llvm-svn: 303015
Running `llvm-readobj -coff-directives msvcrt.lib` resulted in this error:
Invalid data was encountered while parsing the file
This happened because some of the object files in the archive have empty
`.drectve` sections. These empty sections result in a `parse_failed` error being
returned from `COFFObjectFile::getSectionContents()`, which in turn caused
`llvm-readobj` to stop. With this change, `getSectionContents` now returns
success, and like before the resulting array is empty.
Patch by Dave Lee.
Differential Revision: https://reviews.llvm.org/D32652
llvm-svn: 303014
This is a very thin wrapper around StringRef::getAsInteger.
It serves three purposes.
1) It allows a cleaner syntax when you have something other than
a StringRef - for example, a std::string or an llvm::SmallString.
Previously, in this case you would have to write something like:
StringRef(MyStr).getAsInteger(0, Result)
by explicitly constructing a temporary StringRef. This can be
done implicitly however with the new function by just writing:
to_integer(MyStr, ...).
2) Correcting the travesty that is getAsInteger's return value.
This function returns true on success, and false on failure.
While this may cause confusion with people familiar with the
getAsInteger API, there seems to be widespread agreement that
the return semantics of getAsInteger was a mistake.
3) It allows the Radix to be deduced as a default argument by
putting it last in the parameter list. Most uses of getAsInteger
pass 0 for the first argument. With this syntax it can just be
omitted.
llvm-svn: 303011
This reorganisation prevents us from cluttering up the top-level lib directory
with more driver libraries such as llvm-dlltool (see D29892).
llvm-svn: 302995
- MIRYamlMapping: Default value provided for fields which have optional
mappings. Implemented == operators for required classes. When a field's value is
same as default value specified YAML IO class will not print it.
- MIRPrinter: Above mentioned behaviour is not on by default. If -simplify-mir
option not specified, then make yaml::Output to print fields with default values
too.
Differential Revision: https://reviews.llvm.org/D32304
llvm-svn: 302984
Summary:
If the Worklist build causes an IR change this change flag currently factors into the flag for running another iteration of the iteration loop. But only changes during processing should trigger another loop.
This patch captures the worklist creation change flag into the outside the loop flag currently used for DbgDeclares and only sends that flag up to the caller. Rerunning the loop only depends on IC.run() now.
This uses the debug output of InstCombine to determine if one or two iterations run. I couldn't think of a better way to detect it since the second spurious iteration shoudn't make any visible changes. Just wasted computation.
I can do a pre-commit of the test case with the CHECK-NOT as a CHECK if this is an ok way to check this.
This is a subset of D31678 as I'm still not sure how to verify the analysis behavior for that.
Reviewers: davide, majnemer, spatel, chandlerc
Reviewed By: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32453
llvm-svn: 302982
Tests with target intrinsics are inherently target specific, so it
doesn't actually make sense to run them if we've excluded their
target.
llvm-svn: 302979
I bet the change is correct but this test seems to expose some underlying
problem that manifest only on some buildbots, and I'm not able to reproduce
locally. Unfortunately I can't debug right now but I don't want to annoy
people with spurious failures, so I'll XFAIL until I can take a look (over
the weekend).
llvm-svn: 302976