This reverts commit r262316.
It seems that my change breaks an out-of-tree chromium buildbot, so
I'm reverting this in order to investigate the situation further.
llvm-svn: 262387
Summary:
This patch modifies the existing comparison, branch, conditional-move
and select patterns, and adds new ones where needed. Also, the updated
SLT{u,i,iu} set of instructions generate a GPR width result.
The majority of the code changes in the Mips back-end fix the wrong
assumption that the result of SETCC nodes always produce an i32 value.
The changes in the common code path account for the fact that in 64-bit
MIPS targets, i1 is promoted to i32 instead of i64.
Reviewers: dsanders
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D10970
llvm-svn: 262316
Summary:
Previously, it would always select DEXT and substitute any invalid matches
for DEXTU/DEXTM during MipsMCCodeEmitter::encodeInstruction(). This works
but causes problems when adding range checked immediates to IAS.
Now isel selects the correct variant up front.
Reviewers: vkalintiris
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D16810
llvm-svn: 262229
Summary:
The bugs were:
* teq and similar take 4-bit unsigned immediates on microMIPS.
* teqi and similar have side-effects like teq do.
* shll_s.w and shra_r.w take 5-bit unsigned immediates.
* The various DSP ext* instructions take a 5-bit immediate.
* repl.qh takes an 8-bit unsigned immediate.
* repl.ph takes a 10-bit unsigned immediate.
* rddsp/wrdsp take a 10-bit unsigned immediate.
* teqi and similar take signed 16-bit immediates (10-bit for microMIPS).
* Out-of-range immediate macros for or/xor take a simm32/simm64 depending
on architecture. I'll fix the simm64 case properly when I reach simm32.
lui is a bit more lenient than GAS and accepts signed immediates in addition
to unsigned. This is because MipsMCExpr can produce signed values when
constant folding and it currently lacks a way of knowing it should fold to
an unsigned value.
Reviewers: vkalintiris
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D15446
llvm-svn: 259360
Summary:
We don't check the size operand on ext/dext*/ins/dins* yet because the
permitted range depends on the pos argument and we can't check that using
this mechanism.
The bug was that dextu/dinsu accepted 0..31 in the pos operand instead of 32..63.
Reviewers: vkalintiris
Subscribers: llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D15190
llvm-svn: 255015
Summary:
The bugs were:
* append, prepend, and balign were not tested
* balign takes a uimm2 not a uimm5.
* drotr32 was correctly implemented with a uimm5 but the tests expected
'52' to be valid.
* li/la were implemented with a uimm5 instead of simm32. simm32 isn't
completely correct either but I'll fix that when I get to simm32.
A notable omission are some of the shift instructions. Several of these
have been implemented using a single uimm6 instruction (rather than two
uimm5 instructions and a CodeGen-only uimm6 pseudo). These will be updated
in the uimm6 patch.
Reviewers: vkalintiris
Subscribers: llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D14712
llvm-svn: 254164
Summary:
Without these patterns we would generate a complete LL/SC sequence.
This would be problematic for memory regions marked as WRITE-only or
READ-only, as the instructions LL/SC would read/write to the protected
memory regions correspondingly.
Reviewers: dsanders
Subscribers: llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D14397
llvm-svn: 252293
Summary:
Almost no functional change since the InstrItinData's have been duplicated.
The one functional change is to remove IIBranch from the MSA branches. The
classes will be assigned to the MSA instructions as part of implementing
the P5600 scheduler.
II_IndirectBranchPseudo and II_ReturnPseudo can probably be removed. I've
preserved the itinerary information for the corresponding pseudo
instructions to avoid making a functional change to these pseudos in
this patch.
Reviewers: vkalintiris
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12189
llvm-svn: 248273
Summary: It is the same as LA, except that it can also load 64-bit addresses and it only works on 64-bit MIPS architectures.
Reviewers: tomatabacu, seanbruno, vkalintiris
Subscribers: brooks, seanbruno, emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D9524
llvm-svn: 245208
Summary:
This patch remaps the assembly idiom 'move' to 'or' instead of 'daddu' or
'addu'. The use of addu/daddu instead of or as move was highlighted as a
performance issue during the analysis of a recent 64bit design. Originally
move was encoded as 'or' by binutils but was changed for the r10k cpu family
due to their pipeline which had 2 arithmetic units and a single logical unit,
and so could issue multiple (d)addu based moves at the same time but only 1
logical move.
This patch preserves the disassembly behaviour so that disassembling a old style
(d)addu move still appears as move, but assembling move always gives an or
Patch by Simon Dardis.
Reviewers: vkalintiris
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11796
llvm-svn: 244579
It introduced two regressions on 64-bit big-endian targets running under N32
(MultiSource/Benchmarks/tramp3d-v4/tramp3d-v4, and
MultiSource/Applications/kimwitu++/kc) The issue is that on 64-bit targets
comparisons such as BEQ compare the whole GPR64 but incorrectly tell the
instruction selector that they operate on GPR32's. This leads to the
elimination of i32->i64 extensions that are actually required by
comparisons to work correctly.
There's currently a patch under review that fixes this problem.
llvm-svn: 243984
Summary:
Previously it (incorrectly) used GPR's.
Patch by Simon Dardis. A couple small corrections by myself.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10567
llvm-svn: 240883
Summary:
For some branches, GAS accepts an immediate instead of the 2nd register operand.
We only implement this for BNE and BEQ for now. Other branch instructions can be added later, if needed.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: seanbruno, emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D9666
llvm-svn: 239396
Octeon CPUs use dmtc2 rt,imm16 and dmfcp2 rt,imm16 for the crypto coprocessor.
E.g. dmtc2 rt,0x4057 starts calculation of sha-1.
I had to introduce a new deconding namespace to avoid a decoding conflict.
Reviewed By: dsanders
Differential Revision: http://reviews.llvm.org/D10083
llvm-svn: 238439
Summary:
The 64-bit version of the variable shift instructions uses the
shift_rotate_reg class which uses a GPR32Opnd to specify the variable
shift amount. With this patch we avoid the generation of a redundant
SLL instruction for the variable shift instructions in 64-bit targets.
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7413
llvm-svn: 235376
Summary:
Use more reasonable names for these pseudo-instructions.
As there's only one definition tied to any one of these classes, I named them with abbreviated versions of their respective class' name.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7831
llvm-svn: 231240
Summary: Separated some instruction and pseudo-instruction definitions from InstAlias definitions, added banner for pseudo-instructions and removed a redundant whitespace from a pseudo-instruction definition. No functional change.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7552
llvm-svn: 230327
Summary:
This patch adds support for some operations that were missing from
128-bit integer types (add/sub/mul/sdiv/udiv... etc.). With these
changes we can support the __int128_t and __uint128_t data types
from C/C++.
Depends on D7125
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7143
llvm-svn: 227089
This reverts commit r227003. Support for addition/subtraction and
various other operations for the i128 data type will be added in a
future commit based on the review D7143.
llvm-svn: 227082
Summary:
In addition to the included tests, this fixes
test/CodeGen/Generic/i128-addsub.ll on a mips64 host.
Reviewers: atanasyan, sagar, vmedic
Reviewed By: vmedic
Subscribers: sdkie, llvm-commits
Differential Revision: http://reviews.llvm.org/D6610
llvm-svn: 227003
This commits adds the octeon branch instructions bbit0/bbit032/bbit1/bbit132.
It also includes patterns for instruction selection and test cases.
Reviewed by D. Sanders
llvm-svn: 226573
This commit refines the pattern for the octeon seq/seqi/sne/snei instructions.
The target register is set to 0 or 1 according to the result of the comparison.
In C, this is something like
rd = (unsigned long)(rs == rt)
This commit adds a zext to bring the result to i64. With this change the
instruction is selected for this type of code. (gcc produces the same code for
the above C code.)
llvm-svn: 225968
Summary:
... and after all that refactoring, it's possible to distinguish softfloat
floating point values from integers so this patch no longer breaks softfloat to
do it.
Remove direct handling of i32's in the N32/N64 ABI by promoting them to
i64. This more closely reflects the ABI documentation and also fixes
problems with stack arguments on big-endian targets.
We now rely on signext/zeroext annotations (already generated by clang) and
the Assert[SZ]ext nodes to avoid the introduction of unnecessary sign/zero
extends.
It was not possible to convert three tests to use signext/zeroext. These tests
are bswap.ll, ctlz-v.ll, ctlz-v.ll. It's not possible to put signext on a
vector type so we just accept the sign extends here for now. These tests don't
pass the vectors the same way clang does (clang puts multiple elements in the
same argument, these map 1 element to 1 argument) so we don't need to worry too
much about it.
With this patch, all known N32/N64 bugs should be fixed and we now pass the
first 10,000 tests generated by ABITest.py.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6117
llvm-svn: 221534
This commit adds aliases for the sync instruction (synciobdma,
syncs, syncw, syncws) which are used by the Octeon CPU.
Reviewed by D. Sanders
llvm-svn: 217477
Summary:
This completes the change to use JALR instead of JR on MIPS32r6/MIPS64r6.
Reviewers: jkolek, vmedic, zoran.jovanovic, dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4269
llvm-svn: 212605
Summary:
RET, and RET_MM have been replaced by a pseudo named PseudoReturn.
In addition a version with a 64-bit GPR named PseudoReturn64 has been
added.
Instruction selection for a return matches RetRA, which is expanded post
register allocation to PseudoReturn/PseudoReturn64. During MipsAsmPrinter,
this PseudoReturn/PseudoReturn64 are emitted as:
- (JALR64 $zero, $rs) on MIPS64r6
- (JALR $zero, $rs) on MIPS32r6
- (JR_MM $rs) on microMIPS
- (JR $rs) otherwise
On MIPS32r6/MIPS64r6, 'jr $rs' is an alias for 'jalr $zero, $rs'. To aid
development and review (specifically, to ensure all cases of jr are
updated), these aliases are temporarily named 'r6.jr' instead of 'jr'.
A follow up patch will change them back to the correct mnemonic.
Added (JALR $zero, $rs) to MipsNaClELFStreamer's definition of an indirect
jump, and removed it from its definition of a call.
Note: I haven't accounted for MIPS64 in MipsNaClELFStreamer since it's
doesn't appear to account for any MIPS64-specifics.
The return instruction created as part of eh_return expansion is now expanded
using expandRetRA() so we use the right return instruction on MIPS32r6/MIPS64r6
('jalr $zero, $rs').
Also, fixed a misuse of isABI_N64() to detect 64-bit wide registers in
expandEhReturn().
Reviewers: jkolek, vmedic, mseaborn, zoran.jovanovic, dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4268
llvm-svn: 212604
Patch by David Chisnall
His work was sponsored by: DARPA, AFRL
Some small modifications to the original patch: we now error if
it's not possible to expand an instruction (mips-expansions-bad.s has some
examples). Added some comments to the expansions.
llvm-svn: 211271
Summary:
There is no change to the restrictions, just the result register is stored
once in the encoding rather than twice. The rt field is zero in
MIPS32r6/MIPS64r6.
Depends on D4119
Reviewers: zoran.jovanovic, jkolek, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D4120
llvm-svn: 211019
Summary:
The linked-load, store-conditional operations have been re-encoded such
that have a 9-bit offset instead of the 16-bit offset they have prior to
MIPS32r6/MIPS64r6.
While implementing this, I noticed that the atomic load/store pseudos always
emit a sign extension using sll and sra. I have improved this to use seb/seh
when they are available (MIPS32r2/MIPS64r2 and above).
Depends on D4118
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D4119
llvm-svn: 211018
Summary:
It's not emitted by the code generator so we only need assembler tests.
Also added missing daddi aliases from dsub mnemonics, and removed a couple
duplicate dsub tests.
Depends on D4112
Reviewers: zoran.jovanovic, jkolek, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D4113
llvm-svn: 210897
Summary:
c.cond.fmt has been replaced by cmp.cond.fmt. Where c.cond.fmt wrote to
dedicated condition registers, cmp.cond.fmt writes 1 or 0 to normal FGR's
(like the GPR comparisons).
mov[fntz] have been replaced by seleqz and selnez. These instructions
conditionally zero a register based on a bool in a GPR. The results can
then be or'd together to act as a select without, for example, requiring a third
register read port.
mov[fntz].[ds] have been replaced with sel.[ds]
MIPS64r6 currently generates unnecessary sign-extensions for most selects.
This is because the result of a SETCC is currently an i32. Bits 32-63 are
undefined in i32 and the behaviour of seleqz/selnez would otherwise depend
on undefined bits. Later, we will fix this by making the result of SETCC an
i64 on MIPS64 targets.
Depends on D3958
Reviewers: jkolek, vmedic, zoran.jovanovic
Reviewed By: vmedic, zoran.jovanovic
Differential Revision: http://reviews.llvm.org/D4003
llvm-svn: 210777
Summary:
The accumulator-based (HI/LO) multiplies and divides from earlier ISA's have
been removed and replaced with GPR-based equivalents. For example:
div $1, $2
mflo $3
is now:
div $3, $1, $2
This patch disables the accumulator-based multiplies and divides for
MIPS32r6/MIPS64r6 and uses the GPR-based equivalents instead.
Renamed expandPseudoDiv to insertDivByZeroTrap to better describe the
behaviour of the function.
MipsDelaySlotFiller now invalidates the liveness information when moving
instructions to the delay slot. Without this, divrem.ll will abort since
%GP ends up used before it is defined.
Reviewers: vmedic, zoran.jovanovic, jkolek
Reviewed By: jkolek
Differential Revision: http://reviews.llvm.org/D3896
llvm-svn: 210760
%higher and %highest can have non-zero values only for offsets greater
than 2GB, which is highly unlikely, if not impossible when compiling a
single function. This makes long branch for MIPS64 3 instructions smaller.
Differential Revision: http://llvm-reviews.chandlerc.com/D3281.diff
llvm-svn: 209678
Summary:
Instead the system is required to provide some means of handling unaligned
load/store without special instructions. Options include full hardware
support, full trap-and-emulate, and hybrids such as hardware support within
a cache line and trap-and-emulate for multi-line accesses.
MipsSETargetLowering::allowsUnalignedMemoryAccesses() has been configured to
assume that unaligned accesses are 'fast' on the basis that I expect few
hardware implementations will opt for pure-software handling of unaligned
accesses. The ones that do handle it purely in software can override this.
mips64-load-store-left-right.ll has been merged into load-store-left-right.ll
The stricter testing revealed a Bits!=Bytes bug in passByValArg(). This has
been fixed and the variables renamed to clarify the units they hold.
Reviewers: zoran.jovanovic, jkolek, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3872
llvm-svn: 209512
Summary:
We are currently very close to the 32-bit limit of the current assembler
implementation. This is because there is no way to represent an instruction
that is available in, for example, Mips3 or Mips32. We have to define a
feature bit that represents this.
This patch cleans up a pair of redundant feature bits and slightly postpones the
point we will reach the limit.
Reviewers: zoran.jovanovic, jkolek, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3703
llvm-svn: 208685
Summary:
DCL[ZO] are now correctly marked as being MIPS64 instructions. This has no
effect on the CodeGen tests since expansion of i64 prevented their use
anyway.
The check for MIPS16 to prevent the use of CLZ no longer prevents DCLZ as
well. This is not a functional change since DCLZ is still prohibited by
being a MIPS64 instruction (MIPS16 is only compatible with MIPS32).
No functional change
Reviewers: vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3694
llvm-svn: 208544
Summary:
dsbh and dshd are not available on Mips32r2. No codegen test changes
required since expansion of i64 prevented the use of these instructions
anyway.
Depends on D3690
Reviewers: vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3692
llvm-svn: 208542
Summary:
This required a new instruction group representing the 32-bit subset of
MIPS-III that was available in MIPS32
A small number of instructions are correctly rejected but with the wrong error
message. These have been placed in a separate test for now.
There's some obvious InstAlias's that ought to be marked MIPS-III but arent.
This is because they are not currently tested. I intend to catch these with
a final pass through the tablegen records to find tablegen records without
ISA annotations.
Depends on D3674
Reviewers: vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3675
llvm-svn: 208408