Specifically:
- InputChunk::outputOffset -> outSecOffset
- Symbol::get/setVirtualAddress -> get/setVA
- add InputChunk::getOffset helper that takes an offset
These are mostly in preparation for adding support for
SHF_MERGE/SHF_STRINGS but its also good to align with ELF where
possible.
Differential Revision: https://reviews.llvm.org/D97595
Dynamic lookup symbols are symbols that work like dynamic symbols
in ELF: They're not bound to a dylib like normal Mach-O twolevel lookup
symbols, but they live in a global pool and dyld resolves them against
exported symbols from all loaded dylibs.
This adds support for dynamical lookup symbols to lld/mac. They are
represented as DylibSymbols with file set to nullptr.
This also uses this support to implement the -U flag, which makes
a specific symbol that's undefined at the end of the link a
dynamic lookup symbol.
For -U, it'd be sufficient to just to a pass over remaining undefined symbols
at the end of the link and to replace them with dynamic lookup symbols then.
But I'd like to use this code to implement flat_namespace too, and that will
require real support for resolving dynamic lookup symbols in SymbolTable. So
this patch adds this now already.
While writing tests for this, I noticed that we didn't set N_WEAK_DEF in the
symbol table for DylibSymbols, so this fixes that too.
Differential Revision: https://reviews.llvm.org/D97521
For one metadata section usage, each text section references a metadata section.
The metadata sections have a C identifier name to allow the runtime to collect them via `__start_/__stop_` symbols.
Since `__start_`/`__stop_` references are always present from live sections, the
C identifier name sections appear like GC roots, which means they cannot be
discarded by `ld --gc-sections`.
To make such sections GCable, either SHF_LINK_ORDER or a section group is needed.
SHF_LINK_ORDER is not suitable for the references can be inlined into other functions
(See D97430:
Function A (in the section .text.A) references its `__sancov_guard` section.
Function B inlines A (so now .text.B references `__sancov_guard` - this is invalid with the semantics of SHF_LINK_ORDER).
In the linking stage,
if `.text.A` gets discarded, and `__sancov_guard` is retained via the reference from `.text.B`,
the output will be invalid because `__sancov_guard` references the discarded `.text.A`.
LLD errors "sh_link points to discarded section".
)
A section group have size overhead, and is cumbersome when there is just one metadata section.
Add `-z start-stop-gc` to drop the "__start_/__stop_ references retain
non-SHF_LINK_ORDER non-SHF_GROUP C identifier name sections" rule.
We reserve the rights to switch the default in the future.
Reviewed By: phosek, jrtc27
Differential Revision: https://reviews.llvm.org/D96914
When parsing bitcode, convert LTO Symbols to LLD Symbols in order to perform
resolution. The "winning" symbol will then be marked as Prevailing at LTO
compilation time. This is similar to what the other LLD ports do.
This change allows us to handle `linkonce` symbols correctly, and to deal with
duplicate bitcode symbols gracefully. Previously, both scenarios would result in
an assertion failure inside the LTO code, complaining that multiple Prevailing
definitions are not allowed.
While at it, I also added basic logic around visibility. We don't do anything
useful with it yet, but we do check that its value is valid. LLD-ELF appears to
use it only to set FinalDefinitionInLinkageUnit for LTO, which I think is just a
performance optimization.
From my local experimentation, the linker itself doesn't seem to do anything
differently when encountering linkonce / linkonce_odr / weak / weak_odr. So I've
only written a test for one of them. LLD-ELF has more, but they seem to mostly
be testing the intermediate bitcode output of their LTO backend...? I'm far from
an expert here though, so I might very well be missing things.
Reviewed By: #lld-macho, MaskRay, smeenai
Differential Revision: https://reviews.llvm.org/D94342
Remove a stray -lib argument in guardcf-lto.ll; llvm-lib doesn't
support generating import libs from a def file unlike lib.exe.
Previously this worked because the -lib argument was ignored
(printing only a warning).
Differential Revision: https://reviews.llvm.org/D96699
{D95809} introduced a mechanism for synthetic symbol creation of personality
pointers. When multiple section relocations referred to the same personality
pointer, it would deduplicate them. However, it neglected to consider that we
could have symbol relocations that also refer to the same personality pointer.
This diff fixes it.
In practice, this mix of relocations arises when there is a statically-linked
personality routine that is referenced from multiple object files. Within the
same object file, it will be referred to via section relocations, but
(obviously) other object files will refer to it via symbol relocations. Failing
to deduplicate these references resulted in us going over the
3-personality-pointer limit when linking some larger applications.
Fixes llvm.org/PR48389.
Reviewed By: #lld-macho, thakis, alexshap
Differential Revision: https://reviews.llvm.org/D97245
The silent failures had confused me a few times.
I haven't added a similar check for platform yet as we don't yet have logic to
infer the platform automatically, and so adding that check would require
updating dozens of test files.
Reviewed By: #lld-macho, thakis, alexshap
Differential Revision: https://reviews.llvm.org/D97209
I've adjusted the RelocAttrBits to better fit the semantics of
the relocations. In particular:
1. *_UNSIGNED relocations are no longer marked with the `TLV` bit, even
though they can occur within TLV sections. Instead the `TLV` bit is
reserved for relocations that can reference thread-local symbols, and
*_UNSIGNED relocations have their own `UNSIGNED` bit. The previous
implementation caused TLV and regular UNSIGNED semantics to be
conflated, resulting in rebase opcodes being incorrectly emitted for TLV
relocations.
2. I've added a new `POINTER` bit to denote non-relaxable GOT
relocations. This distinction isn't important on x86 -- the GOT
relocations there are either relaxable or non-relaxable loads -- but
arm64 has `GOT_LOAD_PAGE21` which loads the page that the referent
symbol is in (regardless of whether the symbol ends up in the GOT). This
relocation must reference a GOT symbol (so must have the `GOT` bit set)
but isn't itself relaxable (so must not have the `LOAD` bit). The
`POINTER` bit is used for relocations that *must* reference a GOT
slot.
3. A similar situation occurs for TLV relocations.
4. ld64 supports both a pcrel and an absolute version of
ARM64_RELOC_POINTER_TO_GOT. But the semantics of the absolute version
are pretty weird -- it results in the value of the GOT slot being
written, rather than the address. (That means a reference to a
dynamically-bound slot will result in zeroes being written.) The
programs I've tried linking don't use this form of the relocation, so
I've dropped our partial support for it by removing the relevant
RelocAttrBits.
Reviewed By: alexshap
Differential Revision: https://reviews.llvm.org/D97031
/reproduce: now works correctly with:
- /call-graph-ordering-file:
- /def:
- /natvis:
- /order:
- /pdbstream:
I went through all instances of MemoryBuffer::getFile() and made sure
everything that didn't already do so called takeBuffer().
For natvis, that wasn't possible since DebugInfo/PDB wants to take
owernship of the natvis buffer. For that case, I'm manually adding the
tar file entry.
/natvis: and /pdbstream: is slightly awkward, since createResponseFile()
always adds these flags to the response file but createPDB() (which
ultimately adds the files referenced by the flags) is only called if
/debug is also passed. So when using /natvis: without /debug with
/reproduce:, lld won't warn, but when linking using the response
file from the archive, it won't find the natvis file since it's not
in the tar. This isn't a new issue though, and after this patch things
at least work with using /natvis: _with_ debug with /reproduce:.
(Same for /pdbstream:)
Differential Revison: https://reviews.llvm.org/D97212
If the reference-types feature is enabled, call_indirect will explicitly
reference its corresponding function table via `TABLE_NUMBER`
relocations against a table symbol.
Also, as before, address-taken functions can also cause the function
table to be created, only with reference-types they additionally cause a
symbol table entry to be emitted.
We abuse the used-in-reloc flag on symbols to indicate which tables
should end up in the symbol table. We do this because unfortunately
older wasm-ld will carp if it see a table symbol.
Differential Revision: https://reviews.llvm.org/D90948
The special root semantics for identifier-named sections is meant
specifically for the metadata sections. In the context of group
semantics, where group members are always retained or discarded as a
unit, it's natural not to have this semantics apply to a section in a
group, otherwise we would never discard the group defeating the purpose
of using the group in the first place.
This change modifies the GC behavior so that __start_/__stop_ references
don't retain C identifier named sections in section groups which allows
for these groups to be collected. This matches the behavior of BFD ld.
The only kind of existing case that might break is interdependent
metadata sections that are all in a group together, but that group
doesn't contain any other sections referenced by anything except
implicit inclusion in a `__start_` and/or `__stop_`-referenced
identifier-named section, but such cases should be unlikely.
Differential Revision: https://reviews.llvm.org/D96753
See discussion on https://reviews.llvm.org/D93263
-flat_namespace isn't implemented yet, and neither is -undefined dynamic,
so this makes -undefined pretty pointless in lld/MachO for now. But once
we implement -flat_namespace (which we need to do anyways to get check-llvm
to pass with lld as host linker), the code's already there.
Follow-up to https://reviews.llvm.org/D93263#2491865
Differential Revision: https://reviews.llvm.org/D96963
Differential Revision: https://reviews.llvm.org/D95913
Usage: -bundle_loader <executable>
This option specifies the executable that will load the build output file being linked.
When building a bundle, users can use the --bundle_loader to specify an executable
that contains symbols referenced, but not implemented in the bundle.
For relocatable output that needs the indirect function table, identify
the well-known function table. This allows us to properly fix the
limits on the imported table, and in a followup will allow the element
section to reference the indirect function table even if it's not
assigned to table number 0. Adapt tests for import reordering.
Differential Revision: https://reviews.llvm.org/D96770
Before, --importTable forced the creation of an indirect function table,
whether it was needed or not. Now it only imports a table if needed.
Differential Revision: https://reviews.llvm.org/D96872
ST_Data is used to model BFD `BFD_OBJECT`.
A STT_TLS symbol does not have the `BFD_OBJECT` flag in BFD.
This makes sense because a STT_TLS symbol is like in a different address space,
normal data/object properties do not apply on them.
With this change, a STT_TLS symbol will not be displayed as 'O'.
This new behavior matches objdump.
Differential Revision: https://reviews.llvm.org/D96735
Adds a lld test for a case that the handling added for dynamically
exported symbols in 1487747e99 already
fixes. Because isExportDynamic returns true when the symbol is
SharedKind with default visibility, it will treat as dynamically
exported and block devirtualization when the definition of a vtable
comes from a shared library. This is desireable as it is dangerous to
devirtualize in that case, since there could be hidden overrides in the
shared library. Typically that happens when the shared library header
contains available externally definitions, which applications can
override. An example is std::error_category, which is overridden in LLVM
and causing failures after a self build with WPD enabled, because
libstdc++ contains hidden overrides of the virtual base class methods.
The regular LTO case in the new test already worked, but there are
2 fixes in this patch needed for the index-only case and the hybrid
LTO case. For the index-only case, WPD should not simply ignore
available externally vtables. A follow on fix will be made to clang to
emit type metadata for those vtables, which the new test is modeling.
For the hybrid case, we need to ensure when the module is split that any
llvm.*used globals are cloned to the regular LTO split module so
available externally vtable definitions are not prematurely deleted.
Another follow on fix will add the equivalent gold test, which requires
a small fix to the plugin to treat symbols in dynamic libraries the same
way lld already is.
Differential Revision: https://reviews.llvm.org/D96721
This change introduces support for zero flag ELF section groups to lld.
lld already supports COMDAT sections, which in ELF are a special type of
ELF section groups. These are generally useful to enable linker GC where
you want a group of sections to always travel together, that is to be
either retained or discarded as a whole, but without the COMDAT
semantics. Other ELF linkers already support zero flag ELF section
groups and this change helps us reach feature parity.
Differential Revision: https://reviews.llvm.org/D96636
As we don't sort local symbols, don't sort non-local symbols. This makes
non-local symbols appear in their register order, which matches GNU as. The
register order is nice in that you can write tests with interleaved CHECK
prefixes, e.g.
```
// CHECK: something about foo
.globl foo
foo:
// CHECK: something about bar
.globl bar
bar:
```
With the lexicographical order, the user needs to place lexicographical smallest
symbol first or keep CHECK prefixes in one place.
MVP object files may import at most one table, and if they do, it must
be assigned table number zero in the output, as the references to that
table are not relocatable. Ensure that this is the case, even if some
inputs define other tables.
Differential Revision: https://reviews.llvm.org/D96001
This reverts commit ac2be2b6a3.
This causes a whole much of emscripten tests to fail due to newly
undefined symbols appearing. Will investigate and look into re-landing
later.
This fixes two somewhat related issues. Firstly we were never
generating imports for weak functions (even with the `import-functions`
policy for undefined symbols). Adding a direct call to foo in the
`weak-undefined-pic.s` exposed a crash in the linker which this
change fixes.
Secondly we were failing to call `handleWeakUndefines` for the `-pie`
case which is PIC but doesn't set the undefined symbol policy to
`import-functions`. With this change `-pie` binaries will by default
call `handleWeakUndefines` which generates the undefined stub handlers
for any weakly undefined symbols.
Fixes: https://github.com/emscripten-core/emscripten/issues/13337
Differential Revision: https://reviews.llvm.org/D95914
With dynamic linking we have the current limitation that there can be
only a single active data segment (since we use __memory_base as the
load address and we can't do arithmetic in constant expresions).
This change delays the merging of active segments until a little later
in the linking process which means that the grouping of data by section,
and the magic __start/__end symbols work as expected under dynamic
linking.
Differential Revision: https://reviews.llvm.org/D96453
When parsing an object file, LLD interleaves undefined symbol resolution (which
may recursively fetch other lazy objects) with defined symbol resolution.
This may lead to surprising results, e.g. if an object file defines currently
undefined symbols and references another lazy symbol, we may interleave defined
symbols with the lazy fetch, potentially leading to the defined symbols
resolving to different files.
As an example, if both `a.a(a.o)` and `a.a(b.o)` define `foo` (not in COMDAT
group, or in different COMDAT groups) and `__profd_foo` (in COMDAT group
`__profd_foo`). LLD may resolve `foo` to `a.a(a.o)` and `__profd_foo` to
`b.a(b.o)`, i.e. different files.
```
parse ArchiveFile a.a
entry fetches a.a(a.o)
parse ObjectFile a.o
define entry
define foo
reference b
b fetches a.a(b.o)
parse ObjectFile b.o
define prevailing __profd_foo
define (ignored) non-prevailing __profd_foo
```
Assuming a set of interconnected symbols are defined all or none in several lazy
objects. Arguably making them resolve to the same file is preferable than making
them resolve to different files (some are lazy objects).
The main argument favoring the new behavior is the stability. The relative order
between a defined symbol and an undefined symbol does not change the symbol
resolution behavior. Only the relative order between two undefined symbols can
affect fetching behaviors.
---
The real world case is reduced from a Fuchsia PGO usage: `a.a(a.o)` has a
constructor within COMDAT group C5 while `a.a(b.o)` has a constructor within
COMDAT group C2. Because they use different group signatures, they are not
de-duplicated. It is not entirely whether Clang behavior is entirely conforming.
LLD selects the PGO counter section (`__profd_*`) from `a.a(b.o)` and the
constructor section from `a.a(a.o)`. The `__profd_*` is a SHF_LINK_ORDER section
linking to its own non-prevailing constructor section, so LLD errors
`sh_link points to discarded section`. This patch fixes the error.
Differential Revision: https://reviews.llvm.org/D95985
Multi-configuration generators (such as Visual Studio and Xcode) allow the specification of a build flavor at build time instead of config time, so the lit configuration files need to support that - and they do for the most part. There are several places that had one of two issues (or both!):
1) Paths had %(build_mode)s set up, but then not configured, resulting in values that would not work correctly e.g. D:/llvm-build/%(build_mode)s/bin/dsymutil.exe
2) Paths did not have %(build_mode)s set up, but instead contained $(Configuration) (which is the value for Visual Studio at configuration time, for Xcode they would have had the equivalent) e.g. "D:/llvm-build/$(Configuration)/lib".
This seems to indicate that we still have a lot of fragility in the configurations, but also that a number of these paths are never used (at least on Windows) since the errors appear to have been there a while.
This patch fixes the configurations and it has been tested with Ninja and Visual Studio to generate the correct paths. We should consider removing some of these settings altogether.
Reviewed By: JDevlieghere, mehdi_amini
Differential Revision: https://reviews.llvm.org/D96427
This commit regroups commonalities among InputGlobal, InputEvent, and
InputTable into the new InputElement. The subclasses are defined
inline in the new InputElement.h. NFC.
Reviewed By: sbc100
Differential Revision: https://reviews.llvm.org/D94677
The code previously assumed that `getChunk` would return a non-null pointer for
every symbol, but in fact it only returns non-null pointers for DefinedFunction
and DefinedData symbols. This patch fixes the segfault by checking whether
`getChunk` returns a null for each symbol and skipping the mapping output for
any symbols for which it does.
Differential Revision: https://reviews.llvm.org/D88369
This moves the error checking until after all optional
symbols (including the section start/end symbols) have
been created.
Differential Revision: https://reviews.llvm.org/D96318
Since we emit diagnostics for undefineds in Writer::scanRelocations()
and symbols referenced by -u flags aren't referenced by any relocations,
this needs some manual code (similar to the entry point).
Differential Revision: https://reviews.llvm.org/D94371
`extern const bfd_target aarch64_elf64_le_vec;` is a variable in BFD.
It was somehow misused as an emulation by Android.
```
% aarch64-linux-gnu-ld -m aarch64_elf64_le_vec a.o
aarch64-linux-gnu-ld: unrecognised emulation mode: aarch64_elf64_le_vec
Supported emulations: aarch64linux aarch64elf aarch64elf32 aarch64elf32b aarch64elfb armelf armelfb aarch64linuxb aarch64linux32 aarch64linux32b armelfb_linux_eabi armelf_linux_eabi
```
Acked by Stephen Hines, who removed the flag from Android a while back.
Rewritting the path of the sample profile file in response.txt to be relative to the repro tar.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D96193
addOptionalGlobalSymbols should be addOptionalGlobalSymbol.
Also, remove unnecessary additional argument to make the signature match
the sibling function: addOptionalDataSymbol.
Differential Revision: https://reviews.llvm.org/D96305
This is an initial base commit for ARM64 target arch support. I don't represent that it complete or bug-free, but wish to put it out for review now that some basic things like branch target & load/store address relocs are working.
I can add more tests to this base commit, or add them in follow-up commits.
It is not entirely clear whether I use the "ARM64" (Apple) or "AArch64" (non-Apple) naming convention. Guidance is appreciated.
Differential Revision: https://reviews.llvm.org/D88629
The LSDA pointers are encoded as offsets from the image base,
and arranged in one big contiguous array. Each second-level page records
the offset within that LSDA array which corresponds to the LSDA for its
first CU entry.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D95810
Note that there is a triple indirection involved with
personalities and compact unwind:
1. Two bits of each CU encoding are used as an offset into the
personality array.
2. Each entry of the personality array is an offset from the image base.
The resulting address (after adding the image base) should point within the
GOT.
3. The corresponding GOT entry contains the actual pointer to the
personality function.
To further complicate things, when the personality function is in the
object file (as opposed to a dylib), its references in
`__compact_unwind` may refer to it via a section + offset relocation
instead of a symbol relocation. Since our GOT implementation can only
create entries for symbols, we have to create a synthetic symbol at the
given section offset.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D95809
GNU as does not sort local symbols. This has several advantages:
* The .symtab order is roughly the symbol occurrence order.
* The closest preceding STT_SECTION symbol is the definition of a local symbol.
* The closest preceding STT_FILE symbol is the defining file of a local symbol, if there are multiple default-version .file directives. (Not implemented in MC.)
A SHF_LINK_ORDER .gcc_except_table is similar to a .gcc_except_table in
a section group. The associated text section is responsible for retaining it.
LLD still does not support GC of non-group non-SHF_LINK_ORDER .gcc_except_table -
but that is not necessary because we can teach the compiler to set SHF_LINK_ORDER.
The Mach kernel & codesign on arm64 macOS has strict requirements for alignment and sequence of segments and sections. Dyld probably is just as picky, though kernel & codesign reject malformed Mach-O files before dyld ever has a chance.
I developed this diff by incrementally changing alignments & sequences to match the output of ld64. I stopped when my hello-world test program started working: `codesign --verify` succeded, and `execve(2)` didn't immediately fail with `errno == EBADMACHO` = `"Malformed Mach-O file"`.
Differential Revision: https://reviews.llvm.org/D94935
The current diagnostic has confused users. The new wording is adapted from one suggested by Ian Lance Taylor.
Differential Revision: https://reviews.llvm.org/D95917
binutils 2.36 introduced the new section flag SHF_GNU_RETAIN (for ELFOSABI_GNU &
ELFOSABI_FREEBSD) to mark a sections as a GC root. Several LLVM side toolchain
folks (including me) were involved in the design process of SHF_GNU_RETAIN and
were happy with this proposal.
Currently GNU ld only respects SHF_GNU_RETAIN semantics for ELFOSABI_GNU &
ELFOSABI_FREEBSD object files
(https://sourceware.org/bugzilla/show_bug.cgi?id=27282). GNU ld sets EI_OSABI
to ELFOSABI_GNU for relocatable output
(https://sourceware.org/bugzilla/show_bug.cgi?id=27091). In practice the single
value EI_OSABI is neither a good indicator for object file compatibility, nor a
useful mechanism marking used ELF extensions.
For input, we respect SHF_GNU_RETAIN semantics even for ELFOSABI_NONE object
files. This is compatible with how LLD and GNU ld handle (mildly useful) STT_GNU_IFUNC
/ (emitted by GCC, considered misfeature by some folks) STB_GNU_UNIQUE input.
(As of LLVM 12.0.0, the integrated assembler does not set ELFOSABI_GNU for
STT_GNU_IFUNC/STB_GNU_UNIQUE).
Arguably STT_GNU_IFUNC/STB_GNU_UNIQUE probably need indicators in object files
but SHF_GNU_RETAIN is more likely accepted by more OSABI platforms.
For output, we take a step further than GNU ld: we don't promote ELFOSABI_NONE
to ELFOSABI_GNU for all output.
Differential Revision: https://reviews.llvm.org/D95749
In GCC emitted .debug_info sections, R_386_GOTOFF may be used to
relocate DW_AT_GNU_call_site_value values
(https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98946).
R_386_GOTOFF (`S + A - GOT`) is one of the `isStaticLinkTimeConstant` relocation
type which is not PC-relative, so it can be used from non-SHF_ALLOC sections. We
current allow new relocation types as needs come. The diagnostic has caught some
bugs in the past.
Differential Revision: https://reviews.llvm.org/D95994
This extends {D92539} to work even when we are loading archive
members via `-force_load`. I uncovered this issue while trying to
force-load archives containing bitcode -- we were segfaulting.
In addition to fixing the `-force_load` case, this diff also addresses
the behavior of `-ObjC` when LTO bitcode is involved -- we need to
force-load those archive members if they contain ObjC categories.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D95265
This makes our error messages more informative. But the bigger motivation is for
LTO symbol resolution, which will be in an upcoming diff. The changes in this
one are largely mechanical.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D94316
On z/OS, other error messages are not matched correctly in lit tests.
```
EDC5121I Invalid argument.
EDC5111I Permission denied.
```
This patch adds a lit substitution to fix it.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D95808
Add per-reloc-type attribute bits and migrate code from per-target file into target independent code, driven by reloc attributes.
Many cleanups
Differential Revision: https://reviews.llvm.org/D95121
The option catches incompatibility between `R_*_IRELATIVE` and DT_TEXTREL/DF_TEXTREL
before glibc 2.29. Newer glibc versions are more common nowadays and I don't
think this option has ever been used. Diagnosing this problem is also
straightforward by reading the stack trace.
Previously, CMake would find any version of Python3. However, the project
claims to require 3.6 or greater, and 3.6 features are being used.
Reviewed By: yln
Differential Revision: https://reviews.llvm.org/D95635
On z/OS, the following error message is not matched correctly in lit tests.
```
EDC5129I No such file or directory.
```
This patch uses a lit config substitution to check for platform specific error messages.
Reviewed By: muiez, jhenderson
Differential Revision: https://reviews.llvm.org/D95246
Identify dynamically exported symbols (--export-dynamic[-symbol=],
--dynamic-list=, or definitions needed to preempt shared objects) and
prevent their LTO visibility from being upgraded.
This helps avoid use of whole program devirtualization when there may
be overrides in dynamic libraries.
Differential Revision: https://reviews.llvm.org/D91583
A default version (@@) is only available for defined symbols.
Currently we use "@@" for undefined symbols too.
This patch fixes the issue and improves our test case.
Differential revision: https://reviews.llvm.org/D95219
Not sure what the difference is, but using the latter appears to cause
issues in standalone builds. See llvm.org/PR48853.
Reviewed By: #lld-macho, compnerd
Differential Revision: https://reviews.llvm.org/D95359
I noticed that this option was not appearing at all in the `--help`
messages for `wasm-ld` or `ld.lld`.
Add help text and make it consistent across all ports.
Differential Revision: https://reviews.llvm.org/D94925
Whilst migrating/retiring some downstream testing, I came across a test
for weak undef IE and LD TLS references, but was unable to find any
equivalent in LLD's upstream testing. There does seem to be some slight
subtle differences that could be worth testing compared to LE TLS
references, in particular that IE can be relaxed to LE in this case,
hence this change.
Differential Revision: https://reviews.llvm.org/D95124
Reviewed by: grimar, MaskRay
Just getting rid of some logspew as I test LLD under existing build
systems.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D95213
If foo is referenced in any object file, bitcode file or shared object,
`__wrap_foo` should be retained as the redirection target of sym
(f96ff3c0f8).
If the object file defining foo has foo references, we cannot easily distinguish
the case from cases where foo is not referenced (we haven't scanned
relocations). Retain `__wrap_foo` because we choose to wrap sym references
regardless of whether sym is defined to keep non-LTO/LTO/relocatable links' behaviors similar
https://sourceware.org/bugzilla/show_bug.cgi?id=26358 .
If foo is defined in a shared object, `__wrap_foo` can still be omitted
(`wrap-dynamic-undef.s`).
Reviewed By: andrewng
Differential Revision: https://reviews.llvm.org/D95152
Fixes PR48523. When the linker errors with "output file too large",
one question that comes to mind is how the section sizes differ from
what they were previously. Unfortunately, this information is lost
when the linker exits without writing the output file. This change
makes it so that the error message includes the sizes of the largest
sections.
Reviewed By: MaskRay, grimar, jhenderson
Differential Revision: https://reviews.llvm.org/D94560
This makes the following improvements.
For `SHT_GNU_versym`:
* yaml2obj: set `sh_link` to index of `.dynsym` section automatically.
For `SHT_GNU_verdef`:
* yaml2obj: set `sh_link` to index of `.dynstr` section automatically.
* yaml2obj: set `sh_info` field automatically.
* obj2yaml: don't dump the `Info` field when its value matches the number of version definitions.
For `SHT_GNU_verneed`:
* yaml2obj: set `sh_link` to index of `.dynstr` section automatically.
* yaml2obj: set `sh_info` field automatically.
* obj2yaml: don't dump the `Info` field when its value matches the number of version dependencies.
Also, simplifies few test cases.
Differential revision: https://reviews.llvm.org/D94956
This reverts commit 5b7aef6eb4 and relands
6529d7c5a4.
The ASan error was debugged and determined to be the fault of an invalid
object file input in our test suite, which was fixed by my last change.
LLD's project policy is that it assumes input objects are valid, so I
have added a comment about this assumption to the relocation bounds
check.
The relocation offsets were incorrect. I fixed them with llvm-readobj
-codeview -codeview-subsection-bytes, which has a helpful printout of
the relocations that apply to a given symbol record with their offsets.
With this, I was able to update the relocation offsets in the yaml to
fix the line table and the S_DEFRANGE_REGISTER records.
There is still some remaining inconsistency in yaml2obj and obj2yaml
when round tripping MSVC objects, but that isn't a blocker for relanding
D94267.
Run the ObjCARCContractPass during LTO. The legacy LTO backend (under
LTO/ThinLTOCodeGenerator.cpp) already does this; this diff just adds that
behavior to the new LTO backend. Without that pass, the objc.clang.arc.use
intrinsic will get passed to the instruction selector, which doesn't know how to
handle it.
In order to test both the new and old pass managers, I've also added support for
the `--[no-]lto-legacy-pass-manager` flags.
P.S. Not sure if the ordering of the pass within the pipeline matters...
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D94547
In 8031785f4a the temporary object being built was moved to %t/main.o,
but not all run lines were updated to reflect this. Observe the failure
on this buildbot:
http://lab.llvm.org:8011/#/builders/5/builds/3646/steps/9/logs/stdio
It might pass locally for some people due to a stale %t.o hanging around
the build directory.
```
// a.s
jmp fcntl
// b.s
.globl fcntl
fcntl:
ret
```
`ld.lld -shared --wrap=fcntl a.o b.o` has an `R_X86_64_JUMP_SLOT` referencing
the index 0 undefined symbol, which will cause a glibc `symbol lookup error` at
runtime. This is because `__wrap_fcntl` is not in .dynsym
We use an approximation `!wrap->isUndefined()`, which doesn't set
`isUsedInRegularObj` of `__wrap_fcntl` when `fcntl` is referenced and
`__wrap_fcntl` is undefined.
Fix this by using `sym->referenced`.
This reverts commit 418df4a6ab.
This change broke emscripten tests, I believe because it started
generating 5-byte a wide table index in the call_indirect instruction.
Neither v8 nor wabt seem to be able to handle that. The spec
currently says that this is single 0x0 byte and:
"In future versions of WebAssembly, the zero byte occurring in the
encoding of the call_indirectcall_indirect instruction may be used to
index additional tables."
So we need to revisit this change. For backwards compat I guess
we need to guarantee that __indirect_function_table is always at
address zero. We could also consider making this a single-byte
relocation with and assert if have more than 127 tables (for now).
Differential Revision: https://reviews.llvm.org/D95005
Object files (and the output --relocatable) should never define
__indirect_function_table. It should always be linker synthesized
with the final output executable.
Differential Revision: https://reviews.llvm.org/D94993
R_PPC64_ADDR16_HI represents bits 16-31 of a 32-bit value
R_PPC64_ADDR16_HIGH represents bits 16-31 of a 64-bit value.
In the Linux kernel, `LOAD_REG_IMMEDIATE_SYM` defined in `arch/powerpc/include/asm/ppc_asm.h`
uses @l, @high, @higher, @highest to load the 64-bit value of a symbol.
Fixes https://github.com/ClangBuiltLinux/linux/issues/1260
Such files (Thin-%%%%%%.tmp.o) are supposed to be deleted immediately
after they're used (either by renaming or deletion). However, we've seen
instances on Windows where this doesn't happen, probably due to the
filesystem being flaky. This is effectively a resource leak which has
prevented us from using the ThinLTO cache on Windows.
Since those temporary files are in the thinlto cache directory which we
prune periodically anyway, allowing them to be pruned too seems like a
tidy way to solve the problem.
Differential revision: https://reviews.llvm.org/D94962
Element sections will also need flags, so we shouldn't squat the
WASM_SEGMENT namespace.
Depends on D90948.
Differential Revision: https://reviews.llvm.org/D92315
This patch changes to make call_indirect explicitly refer to the
corresponding function table, residualizing TABLE_NUMBER relocs against
it.
With this change, wasm-ld now sees all references to tables, and can
link multiple tables.
Differential Revision: https://reviews.llvm.org/D90948
The commit 18aa0be36e changed the default GotBaseSymInGotPlt to true
for AArch64. This is different than binutils, where
_GLOBAL_OFFSET_TABLE_ points at the start or .got.
It seems to not intefere with current relocations used by LLVM. However
as indicated by PR#40357 [1] gcc generates R_AARCH64_LD64_GOTPAGE_LO15
for -pie (in fact it also generated the relocation for -fpic).
This change is requires to correctly handle R_AARCH64_LD64_GOTPAGE_LO15
by lld from objects generated by gcc.
[1] https://bugs.llvm.org/show_bug.cgi?id=40357
This patch adds support to wasm-ld for linking multiple table references
together, in a manner similar to wasm globals. The indirect function
table is synthesized as needed.
To manage the transitional period in which the compiler doesn't yet
produce TABLE_NUMBER relocations and doesn't residualize table symbols,
the linker will detect object files which have table imports or
definitions, but no table symbols. In that case it will synthesize
symbols for the defined and imported tables.
As a change, relocatable objects are now written with table symbols,
which can cause symbol renumbering in some of the tests. If no object
file requires an indirect function table, none will be written to the
file. Note that for legacy ObjFile inputs, this test is conservative: as
we don't have relocs for each use of the indirecy function table, we
just assume that any incoming indirect function table should be
propagated to the output.
Differential Revision: https://reviews.llvm.org/D91870
On z/OS, the following error message is not matched correctly in lit tests. This patch updates the CHECK expression to match successfully.
```
EDC5129I No such file or directory.
```
Reviewed By: muiez
Differential Revision: https://reviews.llvm.org/D94239
This patch adds support to wasm-ld for linking multiple table references
together, in a manner similar to wasm globals. The indirect function
table is synthesized as needed.
To manage the transitional period in which the compiler doesn't yet
produce TABLE_NUMBER relocations and doesn't residualize table symbols,
the linker will detect object files which have table imports or
definitions, but no table symbols. In that case it will synthesize
symbols for the defined and imported tables.
As a change, relocatable objects are now written with table symbols,
which can cause symbol renumbering in some of the tests. If no object
file requires an indirect function table, none will be written to the
file. Note that for legacy ObjFile inputs, this test is conservative: as
we don't have relocs for each use of the indirecy function table, we
just assume that any incoming indirect function table should be
propagated to the output.
Differential Revision: https://reviews.llvm.org/D91870
This commit adds table symbol support in a partial way, while still
including some special cases for the __indirect_function_table symbol.
No change in tests.
Differential Revision: https://reviews.llvm.org/D94075
When running in `-r/--relocatable` we output relocations but the
new TLS relocations type was missing from `ObjFile::calcNewAddend`
causing this combination of inputs/flags to crash the linker.
Also avoid creating tls variables in relocatable mode. These variables
are only needed when linking final executables.
Fixes: https://github.com/emscripten-core/emscripten/issues/12934
Fixes: PR48506
Differential Revision: https://reviews.llvm.org/D93554
This is a pretty classic optimization. Instead of processing symbol
records and copying them to temporary storage, do a first pass to
measure how large the module symbol stream will be, and then copy the
data into place in the PDB file. This requires defering relocation until
much later, which accounts for most of the complexity in this patch.
This patch avoids copying the contents of all live .debug$S sections
into heap memory, which is worth about 20% of private memory usage when
making PDBs. However, this is not an unmitigated performance win,
because it can be faster to read dense, temporary, heap data than it is
to iterate symbol records in object file backed memory a second time.
Results on release chrome.dll:
peak mem: 5164.89MB -> 4072.19MB (-1,092.7MB, -21.2%)
wall-j1: 0m30.844s -> 0m32.094s (slightly slower)
wall-j3: 0m20.968s -> 0m20.312s (slightly faster)
wall-j8: 0m19.062s -> 0m17.672s (meaningfully faster)
I gathered similar numbers for a debug, component build of content.dll
in Chrome, and the performance impact of this change was in the noise.
The memory usage reduction was visible and similar.
Because of the new parallelism in the PDB commit phase, more cores makes
the new approach faster. I'm assuming that most C++ developer machines
these days are at least quad core, so I think this is a win.
Differential Revision: https://reviews.llvm.org/D94267
OutputSections.h used to close the lld::elf namespace only to
immediately open it again. This change merges both parts into
one.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D94538
Fixes PR48693: --emit-relocs keeps relocation sections. --gdb-index drops
.debug_gnu_pubnames and .debug_gnu_pubtypes but not their relocation sections.
This can cause a null pointer dereference in `getOutputSectionName`.
Also delete debug-gnu-pubnames.s which is covered by gdb-index.s
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D94354
Fixes PR48681: after LTO, lto.tmp may reference a libcall symbol not in an IR
symbol table of any bitcode file. If such a symbol is defined in an archive
matched by a --exclude-libs, we don't correctly localize the symbol.
Add another `excludeLibs` after `compileBitcodeFiles` to localize such libcall
symbols. Unfortunately we have keep the existing one for D43126.
Using VER_NDX_LOCAL is an implementation detail of `--exclude-libs`, it does not
necessarily tie to the "localize" behavior. `local:` patterns in a version
script can be omitted.
The `symbol ... has undefined version ...` error should not be exempted.
Ideally we should error as GNU ld does. https://issuetracker.google.com/issues/73020933
Reviewed By: psmith
Differential Revision: https://reviews.llvm.org/D94280
Local values are constants or addresses that can't be folded into
the instruction that uses them. FastISel materializes these in a
"local value" area that always dominates the current insertion
point, to try to avoid materializing these values more than once
(per block).
https://reviews.llvm.org/D43093 added code to sink these local
value instructions to their first use, which has two beneficial
effects. One, it is likely to avoid some unnecessary spills and
reloads; two, it allows us to attach the debug location of the
user to the local value instruction. The latter effect can
improve the debugging experience for debuggers with a "set next
statement" feature, such as the Visual Studio debugger and PS4
debugger, because instructions to set up constants for a given
statement will be associated with the appropriate source line.
There are also some constants (primarily addresses) that could be
produced by no-op casts or GEP instructions; the main difference
from "local value" instructions is that these are values from
separate IR instructions, and therefore could have multiple users
across multiple basic blocks. D43093 avoided sinking these, even
though they were emitted to the same "local value" area as the
other instructions. The patch comment for D43093 states:
Local values may also be used by no-op casts, which adds the
register to the RegFixups table. Without reversing the RegFixups
map direction, we don't have enough information to sink these
instructions.
This patch undoes most of D43093, and instead flushes the local
value map after(*) every IR instruction, using that instruction's
debug location. This avoids sometimes incorrect locations used
previously, and emits instructions in a more natural order.
In addition, constants materialized due to PHI instructions are
not assigned a debug location immediately; instead, when the
local value map is flushed, if the first local value instruction
has no debug location, it is given the same location as the
first non-local-value-map instruction. This prevents PHIs
from introducing unattributed instructions, which would either
be implicitly attributed to the location for the preceding IR
instruction, or given line 0 if they are at the beginning of
a machine basic block. Neither of those consequences is good
for debugging.
This does mean materialized values are not re-used across IR
instruction boundaries; however, only about 5% of those values
were reused in an experimental self-build of clang.
(*) Actually, just prior to the next instruction. It seems like
it would be cleaner the other way, but I was having trouble
getting that to work.
This reapplies commits cf1c774d and dc35368c, and adds the
modification to PHI handling, which should avoid problems
with debugging under gdb.
Differential Revision: https://reviews.llvm.org/D91734
This removes `exnref` type and `br_on_exn` instruction. This is
effectively NFC because most uses of these were already removed in the
previous CLs.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94041
We were mishandling the case where both `__tbss` and `__thread_data` sections were
present.
TLVP relocations should be encoded as offsets from the start of `__thread_data`,
even if the symbol is actually located in `__thread_bss`. Previously, we were
writing the offset from the start of the containing section, which doesn't
really make sense since there's no way `tlv_get_addr()` can know which section a
given `tlv$init` symbol is in at runtime.
In addition, this patch ensures that we place `__thread_data` immediately before
`__thread_bss`. This is what ld64 does, likely for performance reasons. Zerofill
sections must also be at the end of their segments; we were already doing this,
but now we ensure that `__thread_bss` occurs before `__bss`, so that it's always
possible to have it contiguous with `__thread_data`.
Fixes llvm.org/PR48657.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D94329
Before this patch, when using LLD with /DEBUG:GHASH and MSVC precomp.OBJ files, we had a bunch of:
lld-link: warning: S_[GL]PROC32ID record in blabla.obj refers to PDB item index 0x206ED1 which is not a LF[M]FUNC_ID record
This was caused by LF_FUNC_ID and LF_MFUNC_ID which didn't have correct mapping to the corresponding TPI records. The root issue was that the indexMapStorage was improperly re-assembled in UsePrecompSource::remapTpiWithGHashes.
After this patch, /DEBUG and /DEBUG:GHASH produce exactly the same debug infos in the PDB.
Differential Revision: https://reviews.llvm.org/D93732
A struct in C passed by value did not get debug information. Such values are currently
lowered to a Wasm local even in -O0 (not to an alloca like on other archs), which becomes
a Target Index operand (TI_LOCAL). The DWARF writing code was not emitting locations
in for TI's specifically if the location is a single range (not a list).
In addition, the ExplicitLocals pass which removes the ARGUMENT pseudo instructions did
not update the associated DBG_VALUEs, and couldn't even find these values since the code
assumed such instructions are adjacent, which is not the case here.
Also fixed asm printing of TIs needed by a test.
Differential Revision: https://reviews.llvm.org/D94140
This character indicates that when return pointer authentication is
being used, the function signs the return address using the B key.
Differential Revision: https://reviews.llvm.org/D93954
Add support for linking powerpcle code in LLD.
Rewrite lld/test/ELF/emulation-ppc.s to use a shared check block and add powerpcle tests.
Update tests.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D93917