This is a fixed version of reverted r225500. It fixes the too early
if() continue; of the last patch and adds a comment to the unorthodox
loop.
llvm-svn: 225652
One is that AArch64 has additional restrictions on when local relocations can
be used. We have to take those into consideration when deciding to put a L
symbol in the symbol table or not.
The other is that ld64 requires the relocations to cstring to use linker
visible symbols on AArch64.
Thanks to Michael Zolotukhin for testing this!
Remove doesSectionRequireSymbols.
In an assembly expression like
bar:
.long L0 + 1
the intended semantics is that bar will contain a pointer one byte past L0.
In sections that are merged by content (strings, 4 byte constants, etc), a
single position in the section doesn't give the linker enough information.
For example, it would not be able to tell a relocation must point to the
end of a string, since that would look just like the start of the next.
The solution used in ELF to use relocation with symbols if there is a non-zero
addend.
In MachO before this patch we would just keep all symbols in some sections.
This would miss some cases (only cstrings on x86_64 were implemented) and was
inefficient since most relocations have an addend of 0 and can be represented
without the symbol.
This patch implements the non-zero addend logic for MachO too.
llvm-svn: 225644
This will call `handleChangedOperand()` less frequently, but in that
case (i.e., `isStoredDistinctInContext()`) it has identical logic to
here.
llvm-svn: 225643
Put them in a separate function, so we can reuse them to further
simplify fortified libcalls as well.
Differential Revision: http://reviews.llvm.org/D6540
llvm-svn: 225639
The checks are the same for fortified counterparts to the libcalls, so
we might as well do them in a single place.
Differential Revision: http://reviews.llvm.org/D6539
llvm-svn: 225638
Looking at r225438 inspired me to see how the PowerPC backend handled the
situation (calling a bitcasted TLS global), and it turns out we also produced
an error (cannot select ...). What it means to "call" something that is not a
function is implementation and platform specific, but in the name of doing
something (besides crashing), this makes sure we do what GCC does (treat all
such calls as calls through a function pointer -- meaning that the pointer is
assumed, as is the convention on PPC, to point to a function descriptor
structure holding the actual code address along with the function's TOC pointer
and environment pointer). As GCC does, we now do the same for calling regular
(non-TLS) non-function globals too.
I'm not sure whether this is the most useful way to define the behavior, but at
least we won't be alone.
llvm-svn: 225617
D6015 / rL221313 enabled commutation for SSE immediate blend instructions, but due to a typo the AVX2 VPBLENDW ymm instructions weren't flagged as commutative along with the others in the tables, but were still being commuted in code and tested for.
llvm-svn: 225612
It's possible for the constant pool entry for the shuffle mask to come
from a completely different operation. This occurs when Constants have
the same bit pattern but have different types.
Make DecodePSHUFBMask tolerant of types which, after a bitcast, are
appropriately sized vector types.
This fixes PR22188.
llvm-svn: 225597
Teach the ISelLowering for X86 about the L,M,O target specific constraints.
Although, for the moment, clang performs constraint validation and prevents
passing along inline asm which may have immediate constant constraints violated,
the backend should be able to cope with the invalid inline asm a bit better.
llvm-svn: 225596
This adds support for parsing and emitting the SBREL relocation variant for the
ARM target. Handling this relocation variant is necessary for supporting the
full ARM ELF specification. Addresses PR22128.
llvm-svn: 225595
In the current code we only attempt to match against insertps if we have exactly one element from the second input vector, irrespective of how much of the shuffle result is zeroable.
This patch checks to see if there is a single non-zeroable element from either input that requires insertion. It also supports matching of cases where only one of the inputs need to be referenced.
We also split insertps shuffle matching off into a new lowerVectorShuffleAsInsertPS function.
Differential Revision: http://reviews.llvm.org/D6879
llvm-svn: 225589
This initial implementation of PPCTargetLowering::isZExtFree marks as free
zexts of small scalar loads (that are not sign-extending). This callback is
used by SelectionDAGBuilder's RegsForValue::getCopyToRegs, and thus to
determine whether a zext or an anyext is used to lower illegally-typed PHIs.
Because later truncates of zero-extended values are nops, this allows for the
elimination of later unnecessary truncations.
Fixes the initial complaint associated with PR22120.
llvm-svn: 225584
Summary:
In the previous commit, the register was saved, but space was not allocated.
This resulted in the parameter save area potentially clobbering r30, leading to
nasty results.
Test Plan: Tests updated
Reviewers: hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6906
llvm-svn: 225573
Now that the way that the partial unrolling threshold for small loops is used
to compute the unrolling factor as been corrected, a slightly smaller threshold
is preferable. This is expected; other targets may need to re-tune as well.
llvm-svn: 225566
When we compute the size of a loop, we include the branch on the backedge and
the comparison feeding the conditional branch. Under normal circumstances,
these don't get replicated with the rest of the loop body when we unroll. This
led to the somewhat surprising behavior that really small loops would not get
unrolled enough -- they could be unrolled more and the resulting loop would be
below the threshold, because we were assuming they'd take
(LoopSize * UnrollingFactor) instructions after unrolling, instead of
(((LoopSize-2) * UnrollingFactor)+2) instructions. This fixes that computation.
llvm-svn: 225565
The bitcode reading interface used std::error_code to report an error to the
callers and it is the callers job to print diagnostics.
This is not ideal for error handling or diagnostic reporting:
* For error handling, all that the callers care about is 3 possibilities:
* It worked
* The bitcode file is corrupted/invalid.
* The file is not bitcode at all.
* For diagnostic, it is user friendly to include far more information
about the invalid case so the user can find out what is wrong with the
bitcode file. This comes up, for example, when a developer introduces a
bug while extending the format.
The compromise we had was to have a lot of error codes.
With this patch we use the DiagnosticHandler to communicate with the
human and std::error_code to communicate with the caller.
This allows us to have far fewer error codes and adds the infrastructure to
print better diagnostics. This is so because the diagnostics are printed when
he issue is found. The code that detected the problem in alive in the stack and
can pass down as much context as needed. As an example the patch updates
test/Bitcode/invalid.ll.
Using a DiagnosticHandler also moves the fatal/non-fatal error decision to the
caller. A simple one like llvm-dis can just use fatal errors. The gold plugin
needs a bit more complex treatment because of being passed non-bitcode files. An
hypothetical interactive tool would make all bitcode errors non-fatal.
llvm-svn: 225562
The previous code assumed that such instructions could not have any uses
outside CaseDest, with the motivation that the instruction could not
dominate CommonDest because CommonDest has phi nodes in it. That simply
isn't true; e.g., CommonDest could have an edge back to itself.
llvm-svn: 225552
pshufb can shuffle in zero bytes as well as bytes from a source vector - we can use this to avoid having to shuffle 2 vectors and ORing the result when the used inputs from a vector are all zeroable.
Differential Revision: http://reviews.llvm.org/D6878
llvm-svn: 225551
doing Load PRE"
It's not really expected to stick around, last time it provoked a weird LTO
build failure that I can't reproduce now, and the bot logs are long gone. I'll
re-revert it if the failures recur.
Original description: Perform Scalar PRE on gep indices that feed loads before
doing Load PRE.
llvm-svn: 225536
This reverts commit r225498 (but leaves r225499, which was a worthy
cleanup).
My plan was to change `DEBUG_LOC` to store the `MDNode` directly rather
than its operands (patch was to go out this morning), but on reflection
it's not clear that it's strictly better. (I had missed that the
current code is unlikely to emit the `MDNode` at all.)
Conflicts:
lib/Bitcode/Reader/BitcodeReader.cpp (due to r225499)
llvm-svn: 225531
Summary:
Mips Linux uses $gp to hold a pointer to thread info structure and accesses it
with a named register. This makes this work for LLVM.
The N32 ABI doesn't quite work yet since the frontend generates incorrect IR
for this case. It neglects to truncate the 64-bit GPR to a 32-bit value before
converting to a pointer. Given correct IR (as in the testcase in this patch),
it works correctly.
Reviewers: sstankovic, vmedic, atanasyan
Reviewed By: atanasyan
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6893
llvm-svn: 225529
The P7 benefits from not have really-small loops so that we either have
multiple dispatch groups in the loop and/or the ability to form more-full
dispatch groups during scheduling. Setting the partial unrolling threshold to
44 seems good, empirically, for the P7. Compared to using no late partial
unrolling, this yields the following test-suite speedups:
SingleSource/Benchmarks/Adobe-C++/simple_types_constant_folding
-66.3253% +/- 24.1975%
SingleSource/Benchmarks/Misc-C++/oopack_v1p8
-44.0169% +/- 29.4881%
SingleSource/Benchmarks/Misc/pi
-27.8351% +/- 12.2712%
SingleSource/Benchmarks/Stanford/Bubblesort
-30.9898% +/- 22.4647%
I've speculatively added a similar setting for the P8. Also, I've noticed that
the unroller does not quite calculate the unrolling factor correctly for really
tiny loops because it neglects to account for the fact that not every loop body
replicant contains an ending branch and counter increment. I'll fix that later.
llvm-svn: 225522