This patch lowers the llvm.floor, llvm.ceil, llvm.trunc, and
llvm.nearbyint to Altivec instruction when using 4 single-precision
float vectors.
llvm-svn: 168086
- The code could infinite loop trying to create unique files, if the directory
containing the unique file exists, but open() calls on non-existent files in
the path return ENOENT. This is true on the /dev/fd filesystem, for example.
- Will add a clang side test case for this.
llvm-svn: 168081
positive.
In this particular case, R6 was being spilled by the register scavenger when it
was in fact dead. The isUsed function reported R6 as used because the R6_R7
alias was reserved (due to the fact that we've reserved R7 as the FP). The
solution is to only check if the original register (i.e., R6) isReserved and
not the aliases. The aliases are only checked to make sure they're available.
The test case is derived from one of the nightly tester benchmarks and is rather
intractable and difficult to reproduce, so I haven't included it.
rdar://12592448
llvm-svn: 168054
For global variables that get the same value stored into them
everywhere, GlobalOpt will replace them with a constant. The problem is
that a thread-local GlobalVariable looks like one value (the address of
the TLS var), but is different between threads.
This patch introduces Constant::isThreadDependent() which returns true
for thread-local variables and constants which depend on them (e.g. a GEP
into a thread-local array), and teaches GlobalOpt not to track such
values.
llvm-svn: 168037
the utility for extracting a chain of operations from the IR, thought that it
might as well combine any constants it came across (rather than just returning
them along with everything else). On the other hand, the factorization code
would like to see the individual constants (this is quite reasonable: it is
much easier to pull a factor of 3 out of 2*3 than it is to pull it out of 6;
you may think 6/3 isn't so hard, but due to overflow it's not as easy to undo
multiplications of constants as it may at first appear). This patch therefore
makes LinearizeExprTree stupider: it now leaves optimizing to the optimization
part of reassociate, and sticks to just analysing the IR.
llvm-svn: 168035
Jakub Staszak spotted this in review. I don't notice these things
until I manually rerun benchmarks. But reducing unit tests is a very
high priority.
llvm-svn: 168021
PPC64 target. The five tests modified herein test code generation that is
sensitive to the code model selected. So I've added -code-model=small to
the RUN commands for each.
Since small code model is the default, this has no effect for now; but this
prepares us for eventually changing the default to medium code model for PPC64.
Test changes verified with small and medium code model as default on
powerpc64-unknown-linux-gnu. All tests continue to pass.
llvm-svn: 167999
The stack realignment code was fixed to work when there is stack realignment and
a dynamic alloca is present so this shouldn't cause correctness issues anymore.
Note that this also enables generation of AVX instructions for memset
under the assumptions:
- Unaligned loads/stores are always fast on CPUs supporting AVX
- AVX is not slower than SSE
We may need some tweaked heuristics if one of those assumptions turns out not to
be true.
Effectively reverts r58317. Part of PR2962.
llvm-svn: 167967
For now, this uses 8 on-stack elements. I'll need to do some profiling
to see if this is the best number.
Pointed out by Jakob in post-commit review.
llvm-svn: 167966
This patch changes the definition of negative from -0..-255 to -1..-255. I am changing this because of
a bug that we had in some of the patterns that assumed that "subs" of zero does not set the carry flag.
rdar://12028498
llvm-svn: 167963
Iterating over the children of each node in the potential vectorization
plan must happen in a deterministic order (because it affects which children
are erased when two children conflict). There was no need for this data
structure to be a map in the first place, so replacing it with a vector
is a small change.
I believe that this was the last remaining instance if iterating over the
elements of a Dense* container where the iteration order could matter.
There are some remaining iterations over std::*map containers where the order
might matter, but so long as the Value* for instructions in a block increase
with the order of the instructions in the block (or decrease) monotonically,
then this will appear to be deterministic.
llvm-svn: 167942
When an instruction as written requires 32-bit mode and we're assembling
in 64-bit mode, or vice-versa, issue a more specific diagnostic about
what's wrong.
rdar://12700702
llvm-svn: 167937
This seems like redundant leftovers from r142288 - exposing
TargetData::parseSpecifier to LLParser - which got reverted. Removes
redunant td != NULL checks in parseSpecifier, and simplifies the
interface to parseSpecifier and init.
llvm-svn: 167924
LLVMdev and not hearing any major objections. Although it did spark a nice
discussion regarding what it means to own something in LLVM.
llvm-svn: 167881
chain is correctly setup.
As an example, if the original load must happen before later stores, we need
to make sure the constructed VZEXT_LOAD is constrained to be before the stores.
rdar://12684358
llvm-svn: 167859
physical register as candidate for common subexpression elimination
in MachineCSE.
This fixes a bug on PowerPC in MultiSource/Applications/oggenc/oggenc
caused by MachineCSE invalidly merging two separate DYNALLOC insns.
llvm-svn: 167855
On MSYS, 70 is not seen, but 1.
r127726 should be reworked. Candidate options are;
1) Use not exit(70), but _exit(70), in report_fatal_error().
2) Return with _exit(70) in ~raw_ostream().
llvm-svn: 167836
Previously in a vector of pointers, the pointer couldn't be any pointer type,
it had to be a pointer to an integer or floating point type. This is a hassle
for dragonegg because the GCC vectorizer happily produces vectors of pointers
where the pointer is a pointer to a struct or whatever. Vector getelementptr
was restricted to just one index, but now that vectors of pointers can have
any pointer type it is more natural to allow arbitrary vector getelementptrs.
There is however the issue of struct GEPs, where if each lane chose different
struct fields then from that point on each lane will be working down into
unrelated types. This seems like too much pain for too little gain, so when
you have a vector struct index all the elements are required to be the same.
llvm-svn: 167828
This allows me to begin enabling (or backing out) misched by default
for one subtarget at a time. To run misched we typically want to:
- Disable SelectionDAG scheduling (use the source order scheduler)
- Enable more aggressive coalescing (until we decide to always run the coalescer this way)
- Enable MachineScheduler pass itself.
Disabling PostRA sched may follow for some subtargets.
llvm-svn: 167826
This adds the -join-globalcopies option which can be enabled by
default once misched is also enabled.
Ideally, the register coalescer would be able to split local live
ranges in a way that produces copies that can be easily resolved by
the scheduler. Until then, this heuristic should be good enough to at
least allow the scheduler to run after coalescing.
llvm-svn: 167825
This patch migrates the math library call simplifications from the
simplify-libcalls pass into the instcombine library call simplifier.
I have typically migrated just one simplifier at a time, but the math
simplifiers are interdependent because:
1. CosOpt, PowOpt, and Exp2Opt all depend on UnaryDoubleFPOpt.
2. CosOpt, PowOpt, Exp2Opt, and UnaryDoubleFPOpt all depend on
the option -enable-double-float-shrink.
These two factors made migrating each of these simplifiers individually
more of a pain than it would be worth. So, I migrated them all together.
llvm-svn: 167815
Don't choose a vectorization plan containing only shuffles and
vector inserts/extracts. Due to inperfections in the cost model,
these can lead to infinite recusion.
llvm-svn: 167811
If we have a type 'int a[1]' and a type 'int b[0]', the generated DWARF is the
same for both of them because we use the 'upper_bound' attribute. Instead use
the 'count' attrbute, which gives the correct number of elements in the array.
<rdar://problem/12566646>
llvm-svn: 167806
This fixes another infinite recursion case when using target costs.
We can only replace insert element input chains that are pure (end
with inserting into an undef).
llvm-svn: 167784
getNumContainedPasses() used to compute the size of the vector on demand. It is
called repeated in loops (such as runOnFunction()) and it can be updated while
inside the loop.
llvm-svn: 167759
This teaches the register coalescer to be less prone to split critical
edges. I am currently benchmarking this with the new (post-coalescer)
scheduler. I plan to enable this by default and remove the option as
soon as misched is enabled.
llvm-svn: 167758
The old checking code, which assumed that input shuffles and insert-elements
could always be folded (and thus were free) is too simple.
This can only happen in special circumstances.
Using the simple check caused infinite recursion.
llvm-svn: 167750
Uses the infrastructure from r167742 to support clustering instructure
that the target processor can "fuse". e.g. cmp+jmp.
Next step: target hook implementations with test cases, and enable.
llvm-svn: 167744
The pass would previously assert when trying to compute the cost of
compare instructions with illegal vector types (like struct pointers).
llvm-svn: 167743
This infrastructure is generally useful for any target that wants to
strongly prefer two instructions to be adjacent after scheduling.
A following checkin will add target-specific hooks with unit
tests. Then this feature will be enabled by default with misched.
llvm-svn: 167742
The assertion is trigged when the Reassociater tries to transform expression
... + 2 * n * 3 + 2 * m + ...
into:
... + 2 * (n*3 + m).
In the process of the transformation, a helper routine folds the constant 2*3 into 6,
confusing optimizer which is trying the to eliminate the common factor 2, and cannot
find 2 any more.
Review is pending. But I'd like commit first in order to help those who are waiting
for this fix.
llvm-svn: 167740
This adds support for weak DAG edges to the general scheduling
infrastructure in preparation for MachineScheduler support for
heuristics based on weak edges.
llvm-svn: 167738
This fixes a bug where shuffles were being fused such that the
resulting input types were not legal on the target. This would
occur only when both inputs and dependencies were also foldable
operations (such as other shuffles) and there were other connected
pairs in the same block.
llvm-svn: 167731
The library call simplifier folds memcmp calls with all constant arguments
to a constant. For example:
memcmp("foo", "foo", 3) -> 0
memcmp("hel", "foo", 3) -> 1
memcmp("foo", "hel", 3) -> -1
The folding is implemented in terms of the system memcmp that LLVM gets
linked with. It currently just blindly uses the value returned from
the system memcmp as the folded constant.
This patch normalizes the values returned from the system memcmp to
(-1, 0, 1) so that we get consistent results across multiple platforms.
The test cases were adjusted accordingly.
llvm-svn: 167726
This is the second and last (2/2) part of a change that moves llvm-symbolizer to llvm/tools/, which will allow to build it
with both cmake and configure+make.
llvm-svn: 167723
Each SM and PTX version is modeled as a subtarget feature/CPU. Additionally,
PTX 3.1 is added as the default PTX version to be out-of-the-box compatible
with CUDA 5.0.
Available CPUs for this target:
sm_10 - Select the sm_10 processor.
sm_11 - Select the sm_11 processor.
sm_12 - Select the sm_12 processor.
sm_13 - Select the sm_13 processor.
sm_20 - Select the sm_20 processor.
sm_21 - Select the sm_21 processor.
sm_30 - Select the sm_30 processor.
sm_35 - Select the sm_35 processor.
Available features for this target:
ptx30 - Use PTX version 3.0.
ptx31 - Use PTX version 3.1.
sm_10 - Target SM 1.0.
sm_11 - Target SM 1.1.
sm_12 - Target SM 1.2.
sm_13 - Target SM 1.3.
sm_20 - Target SM 2.0.
sm_21 - Target SM 2.1.
sm_30 - Target SM 3.0.
sm_35 - Target SM 3.5.
llvm-svn: 167699
Transforms/InstCombine/memcmp-1.ll has a test case that looks like:
@foo = constant [4 x i8] c"foo\00"
@hel = constant [4 x i8] c"hel\00"
...
%mem1 = getelementptr [4 x i8]* @hel, i32 0, i32 0
%mem2 = getelementptr [4 x i8]* @foo, i32 0, i32 0
%ret = call i32 @memcmp(i8* %mem1, i8* %mem2, i32 3)
ret i32 %ret
; CHECK: ret i32 2
The folded return value (2 above) is computed using the system memcmp
that the compiler is linked with. This can return different values on
different systems. The test was originally written on an OS X 10.7.5
x86-64 box and passed. However, it failed on one of the x86-64 FreeBSD
buildbots because the system memcpy on that machine returned a different
value (1 instead of 2).
I fixed the test by checking the folding constants with regexes.
llvm-svn: 167691
In some cases the library call simplifier may need to replace instructions
other than the library call being simplified. In those cases it may be
necessary for clients of the simplifier to override how the replacements
are actually done. As such, a new overrideable method for replacing
instructions was added to LibCallSimplifier.
A new subclass of LibCallSimplifier is also defined which overrides
the instruction replacement method. This is because the instruction
combiner defines its own replacement method which updates the worklist
when instructions are replaced.
llvm-svn: 167681
Several of the simplifiers migrated from the simplify-libcalls pass to
the instcombine pass were not correctly checking the target library
information to gate the simplifications. This patch ensures that the
check is made.
llvm-svn: 167660
In the process of migrating optimizations from the simplify-libcalls pass
to the instcombine pass I noticed that a few functions are missing from
the target library information. These functions need to be available for
querying in the instcombine library call simplifiers. More functions will
probably be added in the future as more simplifiers are migrated to
instcombine.
llvm-svn: 167659
mov lr, pc
b.w _foo
The "mov" instruction doesn't set bit zero to one, it's putting incorrect
value in lr. It messes up backtraces.
rdar://12663632
llvm-svn: 167657
The RegMaskSlots contains 'r' slots while NewIdx and OldIdx are 'B'
slots. This broke the checks in the assertions.
This fixes PR14302.
llvm-svn: 167625
Improve ARM build attribute emission for architectures types.
This also changes the default architecture emitted for a generic CPU to "v7".
llvm-svn: 167574
- Add RTM code generation support throught 3 X86 intrinsics:
xbegin()/xend() to start/end a transaction region, and xabort() to abort a
tranaction region
llvm-svn: 167573
misched is disabled by default. With -enable-misched, these heuristics
balance the schedule to simultaneously avoid saturating processor
resources, expose ILP, and minimize register pressure. I've been
analyzing the performance of these heuristics on everything in the
llvm test suite in addition to a few other benchmarks. I would like
each heuristic check to be verified by a unit test, but I'm still
trying to figure out the best way to do that. The heuristics are still
in considerable flux, but as they are refined we should be rigorous
about unit testing the improvements.
llvm-svn: 167527
updating an abstract DIE or not. If we are, then we use that. Its children will
be added on later, as well as the object pointer attribute. Otherwise, this
function may be called with a concrete DIE twice and adding the children and
object pointer attribute to it twice.
<rdar://problem/12401423&12600340>
llvm-svn: 167524
registers. Previously, the register we being marked as implicitly defined, but
not killed. In some cases this would cause the register scavenger to spill a
dead register.
Also, use an empty register mask to simplify the logic and to reduce the memory
footprint.
rdar://12592448
llvm-svn: 167499
register masks. This is an obvious and necessary fix for a soon to be committed
patch. No test case possible at this time. Reviewed by Jakob.
llvm-svn: 167498
This patch adds the interface to expose events from MCJIT when an object is emitted or freed and implements the MCJIT functionality to send those events. The IntelJITEventListener implementation is left empty for now. It will be fleshed out in a future patch.
llvm-svn: 167475
Expose the processor resources defined by the machine model to the
scheduler and other clients through the TargetSchedule interface.
Normalize each resource count with respect to other kinds of
resources. This allows scheduling heuristics to balance resources
against other kinds of resources and latency.
llvm-svn: 167444