This is a tablegen backend to generate documentation for the opcodes that exist
for each target. For each opcode, it lists the assembly string, the names and
types of all operands, and the flags and predicates that apply to the opcode.
Differential revision: https://reviews.llvm.org/D31025
llvm-svn: 318155
After the original commit ([[ https://reviews.llvm.org/rL304088 | rL304088 ]]) was reverted, a discussion in llvm-dev was opened on 'how to accomplish this task'.
In the discussion we concluded that the best way to achieve our goal (which is to automate the folding tables and remove the manually maintained tables) is:
# Commit the tablegen backend disabled by default.
# Proceed with an incremental updating of the manual tables - while checking the validity of each added entry.
# Repeat previous step until we reach a state where the generated and the manual tables are identical. Then we can safely remove the manual tables and include the generated tables instead.
# Schedule periodical (1 week/2 weeks/1 month) runs of the pass:
- if changes appear (new entries):
- make sure the entries are legal
- If they are not, mark them as illegal to folding
- Commit the changes (if there are any).
CMake flag added for this purpose is "X86_GEN_FOLD_TABLES". Building with this flags will run the pass and emit the X86GenFoldTables.inc file under build/lib/Target/X86/ directory which is a good reference for any developer who wants to take part in the effort of completing the current folding tables.
Differential Revision: https://reviews.llvm.org/D38028
llvm-svn: 315173
Summary:
Since asan is linked dynamically on Darwin, the weak interface symbol
is removed by -Wl,-dead_strip.
Reviewers: kcc, compnerd, aaron.ballman
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37636
llvm-svn: 312914
In testing, we've found yet another miscompile caused by the new tables.
And this one is even less clear how to fix (we could teach it to fold
a 16-bit load instead of the 32-bit load it wants, or block folding
entirely).
Also, the approach to excluding instructions seems increasingly to not
scale well.
I have left a more detailed analysis on the review log for the original
patch (https://reviews.llvm.org/D32684) along with suggested path
forward. I will land an additional test case that I wrote which covers
the code that was miscompiling (folding into the output of `pextrw`) in
a subsequent commit to keep this a pure revert.
For each commit reverted here, I've restricted the revert to the
non-test code touching the x86 fold table emission until the last commit
where I did revert the test updates. This means the *new* test cases
added for `insertps` and `xchg` remain untouched (and continue to pass).
Reverted commits:
r304540: [X86] Don't fold into memory operands into insertps in the ...
r304347: [TableGen] Adapt more places to getValueAsString now ...
r304163: [X86] Don't fold away the memory operand of an xchg.
r304123: Don't capture a temporary std::string in a StringRef.
r304122: Resubmit "[X86] Adding new LLVM TableGen backend that ..."
Original commit was in r304088, and after a string of fixes was reverted
previously in r304121 to fix build bots, and then re-landed in r304122.
llvm-svn: 304762
This was reverted due to buildbot breakages and I was not familiar
with this code to investigate it. But while trying to get a
useful backtrace for the author, it turns out the fix was very
obvious. Resubmitting this patch as is, and will submit the
fix in a followup so that the fix is not hidden in the larger
CL.
llvm-svn: 304122
This reverts commit 28cb1003507f287726f43c771024a1dc102c45fe as well
as all subsequent followups. llvm-tblgen currently segfaults with
this change, and it seems it has been broken on the bots all
day with no fixes in preparation. See, for example:
http://lab.llvm.org:8011/builders/clang-x86-windows-msvc2015/
llvm-svn: 304121
X86 backend holds huge tables in order to map between the register and memory forms of each instruction.
This TableGen Backend automatically generated all these tables with the appropriate flags for each entry.
Differential Revision: https://reviews.llvm.org/D32684
llvm-svn: 304088
Summary:
The categories are emitted in a strange order in this patch due to a bug in the
CommandLine library.
Reviewers: ab
Reviewed By: ab
Subscribers: ab, llvm-commits
Differential Revision: https://reviews.llvm.org/D30995
llvm-svn: 298843
X86EvexToVex machine instruction pass compresses EVEX encoded instructions by replacing them with their identical VEX encoded instructions when possible.
It uses manually supported 2 large tables that map the EVEX instructions to their VEX ideticals.
This TableGen backend replaces the tables by automatically generating them.
Differential Revision: https://reviews.llvm.org/D30451
llvm-svn: 297127
Summary:
Adds a RegisterBank tablegen class that can be used to declare the register
banks and an associated tablegen pass to generate the necessary code.
Changes since first commit attempt:
* Added missing guards
* Added more missing guards
* Found and fixed a use-after-free bug involving Twine locals
Reviewers: t.p.northover, ab, rovka, qcolombet
Reviewed By: qcolombet
Subscribers: aditya_nandakumar, rengolin, kristof.beyls, vkalintiris, mgorny, dberris, llvm-commits, rovka
Differential Revision: https://reviews.llvm.org/D27338
llvm-svn: 292478
Summary:
Adds a RegisterBank tablegen class that can be used to declare the register
banks and an associated tablegen pass to generate the necessary code.
Changes since last commit:
The new tablegen pass is now correctly guarded by LLVM_BUILD_GLOBAL_ISEL and
this should fix the buildbots however it may not be the whole fix. The previous
buildbot failures suggest there may be a memory bug lurking that I'm unable to
reproduce (including when using asan) or spot in the source. If they re-occur
on this commit then I'll need assistance from the bot owners to track it down.
Reviewers: t.p.northover, ab, rovka, qcolombet
Reviewed By: qcolombet
Subscribers: aditya_nandakumar, rengolin, kristof.beyls, vkalintiris, mgorny, dberris, llvm-commits, rovka
Differential Revision: https://reviews.llvm.org/D27338
llvm-svn: 292367
Summary:
Adds a RegisterBank tablegen class that can be used to declare the register
banks and an associated tablegen pass to generate the necessary code.
Reviewers: t.p.northover, ab, rovka, qcolombet
Subscribers: aditya_nandakumar, rengolin, kristof.beyls, vkalintiris, mgorny, dberris, llvm-commits, rovka
Differential Revision: https://reviews.llvm.org/D27338
llvm-svn: 292132
This adds a basic tablegen backend that analyzes the SelectionDAG
patterns to find simple ones that are eligible for GlobalISel-emission.
That's similar to FastISel, with one notable difference: we're not fed
ISD opcodes, so we need to map the SDNode operators to generic opcodes.
That's done using GINodeEquiv in TargetGlobalISel.td.
Otherwise, this is mostly boilerplate, and lots of filtering of any kind
of "complicated" pattern. On AArch64, this is sufficient to match G_ADD
up to s64 (to ADDWrr/ADDXrr) and G_BR (to B).
Differential Revision: https://reviews.llvm.org/D26878
llvm-svn: 290284
The core of the change is supposed to be NFC, however it also fixes
what I believe was an undefined behavior when calling:
va_start(ValueArgs, Desc);
with Desc being a StringRef.
Differential Revision: https://reviews.llvm.org/D25342
llvm-svn: 283671
The way the named arguments for various system instructions are handled at the
moment has a few problems:
- Large-scale duplication between AArch64BaseInfo.h and AArch64BaseInfo.cpp
- That weird Mapping class that I have no idea what I was on when I thought
it was a good idea.
- Searches are performed linearly through the entire list.
- We print absolutely all registers in upper-case, even though some are
canonically mixed case (SPSel for example).
- The ARM ARM specifies sysregs in terms of 5 fields, but those are relegated
to comments in our implementation, with a slightly opaque hex value
indicating the canonical encoding LLVM will use.
This adds a new TableGen backend to produce efficiently searchable tables, and
switches AArch64 over to using that infrastructure.
llvm-svn: 274576
looking for it along $PATH. This allows installs of LLVM tools outside of
$PATH to find the symbolizer and produce pretty backtraces if they crash.
llvm-svn: 272232
This is a step towards consolidating some of the information regarding
attributes in a single place.
This patch moves the enum attributes in Attributes.h to the table-gen
file. Additionally, it adds definitions of target independent string
attributes that will be used in follow-up commits by the inliner to
check attribute compatibility.
rdar://problem/19836465
llvm-svn: 252796
To declare or define reserved identifers is undefined behaviour in standard
C++. This needs to be addressed in compiler-rt before it can be used in LLVM.
See the list discussion for details.
This reverts commit r198858.
llvm-svn: 198884
To use this in conjunction with exuberant ctags to generate a single
combined tags file, run tblgen first and then
$ ctags --append [...]
Since some identifiers have corresponding definitions in C++ code,
it can be useful (if using vim) to also use cscope, and
:set cscopetagorder=1
so that
:tag X
will preferentially select the tablegen symbol, while
:cscope find g X
will always find the C++ symbol.
Patch by Kevin Schoedel!
(a couple small formatting changes courtesy of clang-format)
llvm-svn: 177682
(This time I believe I've checked all the -Wreturn-type warnings from GCC & added the couple of llvm_unreachables necessary to silence them. If I've missed any, I'll happily fix them as soon as I know about them)
llvm-svn: 148262
Manage Inits in a FoldingSet. This provides several benefits:
- Memory for Inits is properly managed
- Duplicate Inits are folded into Flyweights, saving memory
- It enforces const-correctness, protecting against certain classes
of bugs
The above benefits allow Inits to be used in more contexts, which in
turn provides more dynamism to TableGen. This enhanced capability
will be used by the AVX code generator to a fold common patterns
together.
llvm-svn: 134907
This allows the (many) pseudo-instructions we have that map onto a single
real instruction to have their expansion during MC lowering handled
automatically instead of the current cumbersome manual expansion required.
These sorts of pseudos are common when an instruction is used in situations
that require different MachineInstr flags (isTerminator, isBranch, et. al.)
than the generic instruction description has. For example, using a move
to the PC to implement a branch.
llvm-svn: 134704
target machine from those that are only needed by codegen. The goal is to
sink the essential target description into MC layer so we can start building
MC based tools without needing to link in the entire codegen.
First step is to refactor TargetRegisterInfo. This patch added a base class
MCRegisterInfo which TargetRegisterInfo is derived from. Changed TableGen to
separate register description from the rest of the stuff.
llvm-svn: 133782