Enable multiple COPY hints to eliminate more COPYs during register allocation.
Note that this is something all targets should do, see
https://reviews.llvm.org/D38128.
Review: Krzysztof Parzyszek
llvm-svn: 325697
This started by noticing that scalar and vector types were producing different results with div ops in PR36305:
https://bugs.llvm.org/show_bug.cgi?id=36305
...but the problem is bigger. I couldn't keep it straight without a table, so I'm attaching that as a PDF to
the review. The x86 tests in undef-ops.ll correspond to that table.
Green means that instsimplify and the DAG agree on the result for all types.
Red means the DAG was returning undef when IR was not.
Yellow means the DAG was returning a non-undef result when IR returned undef.
This patch assumes that we're currently doing the right thing in IR.
Note: I couldn't find any problems with lowering vector constants as the code comments were warning,
but those comments were written long ago in rL36413 .
Differential Revision: https://reviews.llvm.org/D43141
llvm-svn: 324941
Add a common -trap-unreachable option, similar to the target
specific hexagon equivalent, which has been replaced. This
turns unreachable instructions into traps, which is useful for
debugging.
Differential Revision: https://reviews.llvm.org/D42965
llvm-svn: 324880
Instead of:
%bb.1: derived from LLVM BB %for.body
print:
bb.1.for.body:
Also use MIR syntax for MBB attributes like "align", "landing-pad", etc.
llvm-svn: 324563
Vector pairs are legal types, but not every operation can work on pairs.
For those operations that are legal for single vectors, generate a concat
of their results on pair halves.
llvm-svn: 324350
It was expanded directly into instructions earlier. That was to avoid
loads from a constant pool for a vector negation: "xor x, splat(i1 -1)".
Implement ISD opcodes QTRUE and QFALSE to denote logical vectors of
all true and all false values, and handle setcc with negations through
selection patterns.
llvm-svn: 324348
Discussed here:
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120320.html
In preparation for adding support for named vregs we are changing the sigil for
physical registers in MIR to '$' from '%'. This will prevent name clashes of
named physical register with named vregs.
llvm-svn: 323922
Selecting of constant HVX vectors involves some "manual processing",
which mishandled an unrelated BITCAST operation causing a selection
error.
llvm-svn: 323887
Instructions like memd(r0+##global+1) are legal as long as the entire
address is properly aligned. Assuming that "global" is aligned at an
8-byte boundary, the expression "global+1" appears to be misaligned.
Handle such cases in HexagonConstExtenders, and make sure that any non-
extended offsets generated are still aligned accordingly.
llvm-svn: 323799
This reverts r323562, since it wasn't actually necessary. Constant-
extended offsets do not need to be aligned, as long as the effective
address is aligned.
Keep the testcase, with a modification which checks that such offsets
are not unnecessarily avoided.
llvm-svn: 323798
A correctly aligned address may happen to be separated into a variable
part and a constant part, where the constant part does not match the
alignment needed in a load/store that uses this address. Such a constant
cannot be used as an immediate offset in an indexed instruction.
When lowering a global address, make sure that if there is an offset
folded into the global, the offset is valid for all uses in load/store
instructions.
llvm-svn: 323562
In addition to that, make sure that there are no boolean vector types that
are associated with multiple register classes. Specifically, remove v32i1
and v64i1 from integer register classes. These types will correspond to
results of vector comparisons, and as such should belong to the vector
predicate class. Having them in scalar registers as well makes legalization
ambiguous.
llvm-svn: 323229
Shuffle generation uses vmux to collapse vectors resulting from two
individual shuffles into one. The indexes of the elements selected
from the first operand were indicated by 0xFF in the constant vector
used in the compare instruction, but the compare (veqb) set the bits
corresponding to the 0x00 elements, thus inverting the selection.
Reverse the order of operands to vmux to get the correct output.
llvm-svn: 320516
Summary:
Add isRenamable() predicate to MachineOperand. This predicate can be
used by machine passes after register allocation to determine whether it
is safe to rename a given register operand. Register operands that
aren't marked as renamable may be required to be assigned their current
register to satisfy constraints that are not captured by the machine
IR (e.g. ABI or ISA constraints).
Reviewers: qcolombet, MatzeB, hfinkel
Subscribers: nemanjai, mcrosier, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D39400
llvm-svn: 320503
A wrong type was passed to insertVector, causing an out-of-bounds value
to be added an an operand to HexagonISD::INSERT. This later failed in
instruction selection.
llvm-svn: 320369
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
output
As part of the unification of the debug format and the MIR format,
always use `printReg` to print all kinds of registers.
Updated the tests using '_' instead of '%noreg' until we decide which
one we want to be the default one.
Differential Revision: https://reviews.llvm.org/D40421
llvm-svn: 319445
As part of the unification of the debug format and the MIR format, avoid
printing "vreg" for virtual registers (which is one of the current MIR
possibilities).
Basically:
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/%vreg([0-9]+)/%\1/g"
* grep -nr '%vreg' . and fix if needed
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/ vreg([0-9]+)/ %\1/g"
* grep -nr 'vreg[0-9]\+' . and fix if needed
Differential Revision: https://reviews.llvm.org/D40420
llvm-svn: 319427
Change LowerBUILD_VECTOR to use those functions. This commit will tempora-
rily affect constant vector generation (it will generate constant-extended
values instead of non-extended combines), but the code for the general case
should be better. The constant selection part will be fixed later.
llvm-svn: 318877
In getOffsetRange, Max can be set to 0 to force the extender replacement
to be at or below the original value. This would cause the new offset to
be non-negative, which is preferred for memory instructions (to reduce
the likelihood of it getting constant-extended due to predication). The
problem happens when the range is shifted by an offset (present in the
instruction being examined) and the offset is negative. The entire range
for the allowable deviation will then be strictly negative. This creates
a problem, since 0 is assumed to be a valid deviation.
llvm-svn: 316601
This updates the MIRPrinter to include the regclass when printing
virtual register defs, which is already valid syntax for the
parser. That is, given 64 bit %0 and %1 in a "gpr" regbank,
%1(s64) = COPY %0(s64)
would now be written as
%1:gpr(s64) = COPY %0(s64)
While this change alone introduces a bit of redundancy with the
registers block, it allows us to update the tests to be more concise
and understandable and brings us closer to being able to remove the
registers block completely.
Note: We generally only print the class in defs, but there is one
exception. If there are uses without any defs whatsoever, we'll print
the class on all uses. I'm not completely convinced this comes up in
meaningful machine IR, but for now the MIRParser and MachineVerifier
both accept that kind of stuff, so we don't want to have a situation
where we can print something we can't parse.
llvm-svn: 316479
In HexagonISelLowering, there is code to handle the case when
a function returns an i1 type. In this case, we need to generate
extra nodes to copy the result from R0 to a predicate register.
The code was returning the wrong value for the chain edge which
caused an assert "Wrong topological sorting" when converting the
instructions to MIs.
This patch fixes the problem by returning the chain for the final
copy.
Patch by Brendon Cahoon.
llvm-svn: 316367
Normally, if the registers holding the induction variable's bounds
are redefined inside of the loop's body, the loop cannot be converted
to a hardware loop. However, if the redefining instruction is actually
loading an immediate value into the register, this conversion is both
possible and legal (since the immediate itself will be used in the
loop setup in the preheader).
llvm-svn: 316218
This patch lets the llvm tools handle the new HVX target features that
are added by frontend (clang). The target-features are of the form
"hvx-length64b" for 64 Byte HVX mode, "hvx-length128b" for 128 Byte mode HVX.
"hvx-double" is an alias to "hvx-length128b" and is soon will be deprecated.
The hvx version target feature is upgated form "+hvx" to "+hvxv{version_number}.
Eg: "+hvxv62"
For the correct HVX code generation, the user must use the following
target features.
For 64B mode: "+hvxv62" "+hvx-length64b"
For 128B mode: "+hvxv62" "+hvx-length128b"
Clang picks a default length if none is specified. If for some reason,
no hvx-length is specified to llvm, the compilation will bail out.
There is a corresponding clang patch.
Differential Revision: https://reviews.llvm.org/D38851
llvm-svn: 316101
Each constant extender requires an extra instruction, which adds to the
code size and also reduces the number of available slots in an instruction
packet. In most cases, the value of a repeated constant extender could be
loaded into a register, and the instructions using the extender could be
replaced with their counterparts that use that register instead.
This patch adds a pass that tries to reduce the number of constant
extenders, including extenders which differ only in an immediate offset
known at compile time, e.g. @global and @global+12.
llvm-svn: 315735
The pipeliner is generating a serial sequence that causes poor
register allocation when a post-increment instruction appears
prior to the use of the post-increment register. This occurs when
there is a circular set of dependences involved with a sequence
of instructions in the same cycle. In this case, there is no
serialization of the parallel semantics that will not cause an
additional register to be allocated.
This patch fixes the problem by changing the instructions so that
the post-increment instruction is used by the subsequent
instruction, which enables the register allocator to make a
better decision and not require another register.
Patch by Brendon Cahoon.
llvm-svn: 315466
If the two instructions being compared for equivalence have corresponding operands
that are integer constants, then check their values to determine equivalence.
Patch by Suyog Sarda!
llvm-svn: 314642
This patch produces a crash and hexagon_vector_loop_carried_reuse_constant.ll test fails on Windows (llvm-clang-x86_64-expensive-checks-win build bot).
llvm-svn: 314361
If the two instructions being compared for equivalence have corresponding operands
that are integer constants, then check their values to determine equivalence.
Patch by Suyog Sarda!
llvm-svn: 313993