If the `assume-controlled-environment` is `true`, we should expect `getenv()`
to succeed, and the result should not be considered tainted.
By default, the option will be `false`.
Reviewed By: NoQ, martong
Differential Revision: https://reviews.llvm.org/D111296
The `getenv()` function might return `NULL` just like any other function.
However, in case of `getenv()` a state-split seems justified since the
programmer should expect the failure of this function.
`secure_getenv(const char *name)` behaves the same way but is not handled
right now.
Note that `std::getenv()` is also not handled.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D111245
Search for the environment variable in the envp string passed to
ProgramStart. This doesn't work if the main program isn't Fortran.
Differential Revision: https://reviews.llvm.org/D111394
This exposes creating a CallSiteLoc with a callee & list of frames for
callers. Follows the creation approach in C++ side where a list of
frames may be provided.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D111670
This makes Wasm EH work with dynamic linking. So far we were only able
to handle destructors, which do not use any tags or LSDA info.
1. This uses `TargetExternalSymbol` for `GCC_except_tableN` symbols,
which points to the address of per-function LSDA info. It is more
convenient to use than `MCSymbol` because it can take additional
target flags.
2. When lowering `wasm_lsda` intrinsic, if PIC is enabled, make the
symbol relative to `__memory_base` and generate the `add` node. If
PIC is disabled, continue to use the absolute address.
3. Make tag symbols (`__cpp_exception` and `__c_longjmp`) undefined in
the backend, because it is hard to make it work with dynamic
linking's loading order. Instead, we make all tag symbols undefined
in the LLVM backend and import it from JS.
4. Add support for undefined tags to the linker.
Companion patches:
- https://github.com/WebAssembly/binaryen/pull/4223
- https://github.com/emscripten-core/emscripten/pull/15266
Reviewed By: sbc100
Differential Revision: https://reviews.llvm.org/D111388
Negative deltas for LDRLiteral19 have their high bits set. If these bits aren't
masked out then they will overwrite other instruction bits, leading to a bogus
encoding.
This long-standing relocation bug was exposed by e50aea58d5, "[JITLink][ORC]
Major JITLinkMemoryManager refactor.", which caused memory layouts to be
reordered, which in turn lead to a previously unseen negative delta. (Unseen
because LDRLiteral19s were only created in JITLink passes where they always
pointed at segments that were layed-out-after in the old layout).
No testcase yet: Our existing regression test infrastructure is good at checking
that operand bits are correct, but provides no easy way to test for bad opcode
bits. I'll have a think about the right way to approach this.
https://llvm.org/PR52153
Instead of being inline and having a neverCalled() workaround to make it
work in the debugger, define it as a regular exported function.
Also add overloads for the C API types isl_* so it works with managed as
well as unmanaged ISL objects.
The mips-specific includes have been unnecessary ever since the
__clear_cache() builtin replaced cacheflush().
Differential Revision: https://reviews.llvm.org/D111486
This reverts commit 97f0c63783.
As discussed in https://reviews.llvm.org/D110684, it increased the
compile time and the binary size of clang more than 1%. I reverted
this patch first to think about a better way to do it.
As discussed on discord, we have never actually been able to build with the project-wide published min version of 3.14.3. The buildbot that tests the Python configuration is currently pinned to 3.19.1, and there are a number of non-version/policy controlled features that Python building relies on that makes it unreliable with older versions. Some of the issues are pretty fundamental and I don't know how to do them on the older version. I think that, as an optional feature, at least advertising the PSA as in this patch is a good middle ground until the next project-wide CMake version bump.
Also moves setup logic to a macro so that everyone can use it.
The newly introduced API for checking whether poison comes solely from flags which can be dropped was out of sync. This was noticed by a reviewer post commit.
For the moment, disable the floating point flags. In a follow up change, I plan to add support in dropPoisonGeneratingFlags, but that deserves to be a change of it's own.
Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797
Mark LWG3274 as complete. The feature test macro `__cpp_lib_span` was added in
`6d2599e4f776d0cd88438cb82a00c4fc25cc3f67`.
https://wg21.link/p1024 mentions marking `span:::empty()` with
`[[nodiscard]]` which is not done yet. So, do that and add tests.
Reviewed By: ldionne, Quuxplusone, Mordante, #libc
Differential Revision: https://reviews.llvm.org/D111516
1. To avoid two ExecutionModeOp using the same name, adding the value of execution mode in name when converting to LLVM dialect.
2. To avoid syntax error in spv.OpLoad, add OpTypeSampledImage into SPV_Type.
Reviewed by:antiagainst
Differential revision:https://reviews.llvm.org/D111193
Fuchsia Clang code coverage pipeline started to use binary ids that are
embedded in profiles. This patch removes emitting symbolizer markup,
which is not necessary in the coverage pipeline anymore.
Differential Revision: https://reviews.llvm.org/D111674
Do the following optimization for immediate materialisation:
1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000, first
generate the lower 32-bit with Val|0x80000000 (which is expected be an
int32), then emit (BCLRI r, 31).
2. For values in range 0x80000000 ~ 0xffffffff, first generate the lower
32-bit with Val&~0x80000000 (which is expected to be an int32), then
emit (BSETI r, 31).
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D111532
A recent patch to fix warnings from a Windows build regarding
inconsistent "struct" vs "class" usage missed a few code sites
and now the "latest-clang" build bot is also failing. This
patch should resolve those failing builds.
By doing so, it is not necessary to get the OpOperand a second time via
getAliasingOpOperand. Also, code slightly more readable because we do
not have to deal with Optional<> return value.
Differential Revision: https://reviews.llvm.org/D110918
A recently added class constructor needs to be "explicit" to
prevent it from being available for use as a conversion, which
is breaking the MSVC build of flang.
GCC 9.1 removed Intel MPX support. Linux kernel removed MPX in 2019.
glibc 2.35 will remove MPX.
Our support is limited: we support assembling of bndmov but not bnd.
Just remove it.
Reviewed By: pengfei, skan
Differential Revision: https://reviews.llvm.org/D111517
Intel MPX failed to gain wide adoption and has been deprecated for a while.
GCC 9.1 removed Intel MPX support. Linux kernel removed MPX in 2019.
glibc 2.35 will remove the support.
B/O/Z integer output editing must not reflect any sign extension
of scalar output values. Add more size-dependent OutputInteger
I/O APIs and kind instantiations of EditIntegerOutput.
Differential Revision: https://reviews.llvm.org/D111678
The Fortran 2018 standard defines the concept of simple contiguity
in subclause 9.5.4 as a characteristic of arrays. So that scalars
may also be used in contexts where simply contiguous arrays are
allowed, f18 treats them as single-element arrays that are trivially
contiguous. This patch documents this semantic extension and
also adds comments to the predicate that implements the concept.
Differential Revision: https://reviews.llvm.org/D111679
An LLVM Flang build bot for Windows recently failed with a
bunch of warning messages. None were from recent changes to
the Fortran compiler; I suspect that a newer (or maybe older)
version of MSVC was being used, or perhaps a different set of
compiler options were temporarily applied to the build, since
the buildbot status went back to green shortly thereafter.
Most of the warnings looked bogus to me, but some are legitimate
concerns and we might as well clean them up. This patch does so.
Differential Revision: https://reviews.llvm.org/D111677
This lets us reduce size of Node, similar to D111183 proposal.
Depends on D111610.
Reviewed By: dvyukov
Differential Revision: https://reviews.llvm.org/D111612
We shouldn't broadcast the original value when doing reduction. Instead
we compute the reduction and then combine it with the original value.
Differential Revision: https://reviews.llvm.org/D111666
Another follow-up to 2815ed57e3 and 19b4e3cfc6. For unit tests that don't use
an ExecutionSession we need to call ExecutorProcessControl::disconnect directly
to wait for the dispatcher to shut down.
https://llvm.org/PR52153
CUDA-11 headers rely on these NVCC builtins.
Despite having `__nv` previx, those are *not* provided by libdevice.
Differential Revision: https://reviews.llvm.org/D111665
2815ed57e3 added calls from ExecutorProcessControl::disconnect implementations
to shut down the TaskDispatcher. We still need to call endSession to trigger
disconnection though. This commit adds the necessary calls to the failing unit
tests.
https://llvm.org/PR52153