This revision allows for attaching "debug labels" to patterns, and provides to FrozenRewritePatternSet for filtering patterns based on these labels (in addition to the debug name of the pattern). This will greatly simplify the ability to write tests targeted towards specific patterns (in cases where many patterns may interact), will also simplify debugging pattern application by observing how application changes when enabling/disabling specific patterns.
To enable better reuse of pattern rewrite options between passes, this revision also adds a new PassUtil.td file to the Rewrite/ library that will allow for passes to easily hook into a common interface for pattern debugging. Two options are used to seed this utility, `disable-patterns` and `enable-patterns`, which are used to enable the filtering behavior indicated above.
Differential Revision: https://reviews.llvm.org/D102441
A single backslash is not properly escaped in the web documentation. We can make sure to escape for rendering subscripts.
Additionally, it also fixed the mal-formed equations in //"Affine to fixed point"// and //"Fixed point to affine"// sections. With this fix, the page is rendered as follows.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D101252
This patch is the third in a series of patches fixing markdown links and references inside the mlir documentation.
This patch addresses all broken references to other markdown files and sections inside the Tutorials folder.
Differential Revision: https://reviews.llvm.org/D103017
Update the paragraph on generic / indexed_generic to reflect the unification of these operations.
Differential Revision: https://reviews.llvm.org/D102775
This patch is the first in a series of patches fixing markdown links and references inside the mlir documentation. I chose to split it in a few reviews to be able to iterate quicker and to ease review.
This patch addresses all broken references to other markdown files and sections inside the Dialects folder.
One change that was also done was to insert '/' between the markdown files and section:
Example:
Builtin.md#integertype
was changed to:
Builtin.md/#integertype
After compilation, hugo then translates the later to jump directly to the integer type section, but not the former. Not inserting the slash would simply jump to just the Builtin page, instead of the integertype section. I therefore changed occurrences of the former version to the later as well.
Differential Revision: https://reviews.llvm.org/D103011
This patch is the second in a series of patches fixing markdown links and references inside the mlir documentation.
This patch addresses all broken references to other markdown files and sections inside the Rationale folder.
In addition to fixing the links and references like in the previous patch, I also changed references which are URLs to the mlir.llvm.org/docs website, to proper relative markdown references instead.
Differential Revision: https://reviews.llvm.org/D103013
This is the fourth and final patch in a series of patches fixing markdown links and references inside the mlir documentation. This patch combined with the other three should fix almost every broken link on mlir.llvm.org as far as I can tell.
This patch in particular addresses all Markdown files in the top level docs directory.
Differential Revision: https://reviews.llvm.org/D103032
Fix inconsistent MLIR CMake variable names. Consistently name them as
MLIR_ENABLE_<feature>.
Eg: MLIR_CUDA_RUNNER_ENABLED -> MLIR_ENABLE_CUDA_RUNNER
MLIR follows (or has mostly followed) the convention of naming
cmake enabling variables in the from MLIR_ENABLE_... etc. Using a
convention here is easy and also important for convenience. A counter
pattern was started with variables named MLIR_..._ENABLED. This led to a
sequence of related counter patterns: MLIR_CUDA_RUNNER_ENABLED,
MLIR_ROCM_RUNNER_ENABLED, etc.. From a naming standpoint, the imperative
form is more meaningful. Additional discussion at:
https://llvm.discourse.group/t/mlir-cmake-enable-variable-naming-convention/3520
Switch all inconsistent ones to the ENABLE form. Keep the couple of old
mappings needed until buildbot config is migrated.
Differential Revision: https://reviews.llvm.org/D102976
These pass documents belong on the main pass page, and not generated as
top level pages.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D102947
The current implementation has several key limitations and weirdness, e.g local reproducers don't support dynamic pass pipelines, error messages don't include the passes that failed, etc. This revision refactors the implementation to support more use cases, and also be much cleaner.
The main change in this revision, aside from moving the implementation out of Pass.cpp and into its own file, is the addition of a crash recovery pass instrumentation. For local reproducers, this instrumentation handles setting up the recovery context before executing each pass. For global reproducers, the instrumentation is used to provide a more detailed error message, containing information about which passes are running and on which operations.
Example of new message:
```
error: Failures have been detected while processing an MLIR pass pipeline
note: Pipeline failed while executing [`TestCrashRecoveryPass` on 'module' operation: @foo]: reproducer generated at `crash-recovery.mlir.tmp`
```
Differential Revision: https://reviews.llvm.org/D101854
This flag will print the IR after a pass only in the case where the pass failed. This can be useful to more easily view the invalid IR, without needing to print after every pass in the pipeline.
Differential Revision: https://reviews.llvm.org/D101853
This is a hook that allows for providing custom initialization of the pattern, e.g. if it has bounded recursion, setting the debug name, etc., without needing to define a custom constructor. A non-virtual hook was chosen to avoid polluting the vtable with code that we really just want to be inlined when constructing the pattern. The alternative to this would be to just define a constructor for each pattern, this unfortunately creates a lot of otherwise unnecessary boiler plate for a lot of patterns and a hook provides a much simpler/cleaner interface for the very common case.
Differential Revision: https://reviews.llvm.org/D102440
We currently do not document how the pattern rewriter infra treats recursion when it gets detected. This revision adds a blurb on recursion in patterns, and how patterns can signal that they are equipped to handle it.
Differential Revision: https://reviews.llvm.org/D102439
This factors out the pass timing code into a separate `TimingManager`
that can be plugged into the `PassManager` from the outside. Users are
able to provide their own implementation of this manager, and use it to
time additional code paths outside of the pass manager. Also allows for
multiple `PassManager`s to run and contribute to a single timing report.
More specifically, moves most of the existing infrastructure in
`Pass/PassTiming.cpp` into a new `Support/Timing.cpp` file and adds a
public interface in `Support/Timing.h`. The `PassTiming` instrumentation
becomes a wrapper around the new timing infrastructure which adapts the
instrumentation callbacks to the new timers.
Reviewed By: rriddle, lattner
Differential Revision: https://reviews.llvm.org/D100647
We are able to bind the result from native function while rewriting
pattern. In matching pattern, if we want to get some values back, we can
do that by passing parameter as return value placeholder. Besides, add
the semantic of '$_self' in NativeCodeCall while matching, it'll be the
operation that defines certain operand.
Differential Revision: https://reviews.llvm.org/D100746
This provides information when the user hovers over a part of the source .mlir file. This revision adds the following hover behavior:
* Operation:
- Shows the generic form.
* Operation Result:
- Shows the parent operation name, result number(s), and type(s).
* Block:
- Shows the parent operation name, block number, predecessors, and successors.
* Block Argument:
- Shows the parent operation name, parent block, argument number, and type.
Differential Revision: https://reviews.llvm.org/D101113
* NFC but has some fixes for CMake glitches discovered along the way (things not cleaning properly, co-mingled depends).
* Includes previously unsubmitted fix in D98681 and a TODO to fix it more appropriately in a smaller followup.
Differential Revision: https://reviews.llvm.org/D101493
The patch extends the OpDSL with support for:
- Constant values
- Capture scalar parameters
- Access the iteration indices using the index operation
- Provide predefined floating point and integer types.
Up to now the patch only supports emitting the new nodes. The C++/yaml path is not fully implemented. The fill_rng_2d operation defined in emit_structured_generic.py makes use of the new DSL constructs.
Differential Revision: https://reviews.llvm.org/D101364
This revision takes the forward value propagation engine in SCCP and refactors it into a more generalized forward dataflow analysis framework. This framework allows for propagating information about values across the various control flow constructs in MLIR, and removes the need for users to reinvent the traversal (often not as completely). There are a few aspects of the traversal, that were conservative for SCCP, that should be relaxed to support the needs of different value analyses. To keep this revision simple, these conservative behaviors will be left in (Note that this won't produce an incorrect result, but may produce more conservative results than necessary in certain edge cases. e.g. region entry arguments for non-region branch interface operations). The framework also only focuses on computing lattices for values, given the SCCP origins, but this is something to relax as needed in the future.
Given that this logic is already in SCCP, a majority of this commit is NFC. The more interesting parts are the interface glue that clients interact with.
Differential Revision: https://reviews.llvm.org/D100915
This covers some of the basic documentation, but is still missing some documentation/examples of features provided by the server. Feature documentation will be added in a followup.
Differential Revision: https://reviews.llvm.org/D100690
The patch enables the use of index type in vectors. It is a prerequisite to support vectorization for indexed Linalg operations. This refactoring became possible due to the newly introduced data layout infrastructure. The data layout of a module defines the bitwidth of the index type needed to verify bitcasts and similar vector operations.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D99948
This commit add utility functions for creating push constant
storage variable and loading values from it.
Along the way, performs some clean up:
* Deleted `setABIAttrs`, which is just a 4-liner function
with one user.
* Moved `SPIRVConverstionTarget` into `mlir` namespace,
to be consistent with `SPIRVTypeConverter` and
`LLVMConversionTarget`.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D99725
* Also adds some verbiage about upgrading `pip` itself, since this is a
common source of issues.
Differential Revision: https://reviews.llvm.org/D99522
Add a new clone operation to the memref dialect. This operation implicitly
copies data from a source buffer to a new buffer. In contrast to the linalg.copy
operation, this operation does not accept a target buffer as an argument.
Instead, this operation performs a conceptual allocation which does not need to
be performed manually.
Furthermore, this operation resolves the dependency from the linalg-dialect
in the BufferDeallocation pass. In addition, we also extended the canonicalization
patterns to fold clone operations. The copy removal pass has been removed.
Differential Revision: https://reviews.llvm.org/D99172
In particular for Graph Regions, the terminator needs is just a
historical artifact of the generalization of MLIR from CFG region.
Operations like Module don't need a terminator, and before Module
migrated to be an operation with region there wasn't any needed.
To validate the feature, the ModuleOp is migrated to use this trait and
the ModuleTerminator operation is deleted.
This patch is likely to break clients, if you're in this case:
- you may iterate on a ModuleOp with `getBody()->without_terminator()`,
the solution is simple: just remove the ->without_terminator!
- you created a builder with `Builder::atBlockTerminator(module_body)`,
just use `Builder::atBlockEnd(module_body)` instead.
- you were handling ModuleTerminator: it isn't needed anymore.
- for generic code, a `Block::mayNotHaveTerminator()` may be used.
Differential Revision: https://reviews.llvm.org/D98468
Index type is an integer type of target-specific bitwidth present in many MLIR
operations (loops, memory accesses). Converting values of this type to
fixed-size integers has always been problematic. Introduce a data layout entry
to specify the bitwidth of `index` in a given layout scope, defaulting to 64
bits, which is a commonly used assumption, e.g., in constants.
Port builtin-to-LLVM type conversion to use this data layout entry when
converting `index` type and untie it from pointer size. This is particularly
relevant for GPU targets. Keep a possibility to forcibly override the index
type in lowerings.
Depends On D98525
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D98937
This is useful for bit-packing types such as vectors and tuples as well as for
exotic architectures that have non-8-bit bytes.
Depends On D98500
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D98524
ModuleOp is a natural place to provide scoped data layout information. However,
it is undesirable for ModuleOp to implement the entirety of
DataLayoutOpInterface because that would require either pushing the interface
inside the IR library instead of a separate library, or putting the default
implementation of the interface as inline functions in headers leading to
binary bloat. Instead, ModuleOp accepts an arbitrary data layout spec attribute
and has a dedicated hook to extract it, and DataLayout is modified to know
about ModuleOp particularities.
Reviewed By: herhut, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D98500
This mechanism makes it possible for a dialect to not register all
operations but still answer interface-based queries.
This can useful for dialects that are "open" or connected to an external
system and still interoperate with the compiler. It can also open up the
possibility to have a more extensible compiler at runtime: the compiler
does not need a pre-registration for each operation and the dialect can
inject behavior dynamically.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D93085
This provides a simplified way to implement 'matchAndRewrite' style
canonicalization patterns for ops that don't need the full power of
RewritePatterns. Using this style, you can implement a static method
with a signature like:
```
LogicalResult AssertOp::canonicalize(AssertOp op, PatternRewriter &rewriter) {
return success();
}
```
instead of dealing with defining RewritePattern subclasses. This also
adopts this for a few canonicalization patterns in the std dialect to
show how it works.
Differential Revision: https://reviews.llvm.org/D99143
The "else" group of an optional element is a collection of elements that get parsed/printed when the anchor of the main element group is *not* present. This is useful when there is a special syntax when an element is not present. The new syntax for an optional element is shown below:
```
optional-group: `(` elements `)` (`:` `(` else-elements `)`)? `?`
```
An example of how this might be used is shown below:
```tablegen
def FooOp : ... {
let arguments = (ins UnitAttr:$foo);
let assemblyFormat = "attr-dict (`foo_is_present` $foo^):(`foo_is_absent`)?";
}
```
would be formatted as such:
```mlir
// When the `foo` attribute is present:
foo.op foo_is_present
// When the `foo` attribute is not present:
foo.op foo_is_absent
```
Differential Revision: https://reviews.llvm.org/D99129
This doesn't change APIs, this just cleans up the many in-tree uses of these
names to use the new preferred names. We'll keep the old names around for a
couple weeks to help transitions.
Differential Revision: https://reviews.llvm.org/D99127
This allows adding a C function pointer as a matchAndRewrite style pattern, which
is a very common case. This adopts it in ExpandTanh to show how it reduces a level
of nesting.
We could allow C++ lambdas here, but that doesn't work as well with type inference
in the common case. Instead of:
patterns.insert(convertTanhOp);
you need to specify:
patterns.insert<math::TanhOp>(convertTanhOp);
which is boilerplate'y. Capturing state like this is very uncommon, so we choose
to require clients to define their own structs and use the non-convenience method
when they need to do so.
Differential Revision: https://reviews.llvm.org/D99039
Now that all of the builtin dialect is generated from ODS, its documentation in LangRef can be split out and replaced with references to Dialects/Builtin.md. LangRef is quite crusty right now and should really have a full cleanup done in a followup.
Differential Revision: https://reviews.llvm.org/D98562
Returning structs directly in LLVM does not necessarily align with the C ABI of
the platform. This might happen to work on Linux but for small structs this
breaks on Windows. With this change, the wrappers work platform independently.
Differential Revision: https://reviews.llvm.org/D98725
Added additional information about the SSA like properties
that has to be fulfilled in the bufferization steps.
Differential Revision: https://reviews.llvm.org/D95522
Some parameters to attributes and types rely on special comparison routines other than operator== to ensure equality. This revision adds support for those parameters by allowing them to specify a `comparator` code block that determines if `$_lhs` and `$_rhs` are equal. An example of one of these paramters is APFloat, which requires `bitwiseIsEqual` for bitwise comparison (which we want for attribute equality).
Differential Revision: https://reviews.llvm.org/D98473
This allows for storage instances to store data that isn't uniqued in the context, or contain otherwise non-trivial logic, in the rare situations that they occur. Storage instances with trivial destructors will still have their destructor skipped. A consequence of this is that the storage instance definition must be visible from the place that registers the type.
Differential Revision: https://reviews.llvm.org/D98311
Data layout information allows to answer questions about the size and alignment
properties of a type. It enables, among others, the generation of various
linear memory addressing schemes for containers of abstract types and deeper
reasoning about vectors. This introduces the subsystem for modeling data
layouts in MLIR.
The data layout subsystem is designed to scale to MLIR's open type and
operation system. At the top level, it consists of attribute interfaces that
can be implemented by concrete data layout specifications; type interfaces that
should be implemented by types subject to data layout; operation interfaces
that must be implemented by operations that can serve as data layout scopes
(e.g., modules); and dialect interfaces for data layout properties unrelated to
specific types. Built-in types are handled specially to decrease the overall
query cost.
A concrete default implementation of these interfaces is provided in the new
Target dialect. Defaults for built-in types that match the current behavior are
also provided.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D97067
Based on the following discussion:
https://llvm.discourse.group/t/rfc-memref-memory-shape-as-attribute/2229
The goal of the change is to make memory space property to have more
expressive representation, rather then "magic" integer values.
It will allow to have more clean ASM form:
```
gpu.func @test(%arg0: memref<100xf32, "workgroup">)
// instead of
gpu.func @test(%arg0: memref<100xf32, 3>)
```
Explanation for `Attribute` choice instead of plain `string`:
* `Attribute` classes allow to use more type safe API based on RTTI.
* `Attribute` classes provides faster comparison operator based on
pointer comparison in contrast to generic string comparison.
* `Attribute` allows to store more complex things, like structs or dictionaries.
It will allows to have more complex memory space hierarchy.
This commit preserve old integer-based API and implements it on top
of the new one.
Depends on D97476
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D96145
* Only leaf packages are non-namespace packages. This allows most of the top levels to be split into different directories or deployment packages. In the previous state, the presence of __init__.py files at each level meant that the entire tree could only ever exist in one physical directory on the path.
* This changes the API usage slightly: `import mlir` will no longer do a deep import of `mlir.ir`, etc. This may necessitate some client code changes.
* Dialect gen code was restructured so that the user is responsible for providing the `my_dialect.py` file, which then must import its peer `_my_dialect_ops_gen`. This gives complete control of the dialect namespace to the user instead of to tablegen code, allowing further dialect-specific python APIs.
* Correspondingly, the previous extension modules `_my_dialect.py` are now `_my_dialect_ops_ext.py`.
* Now that the `linalg` namespace is open, moved the `linalg_opdsl` tool into it.
* This may require some corresponding downstream adjustments to npcomp, circt, et al:
* Probably some shallow imports need to be converted to deep imports (i.e. not `import mlir` brings in the world).
* Each tablegen generated dialect now needs an explicit `foo.py` which does a `from ._foo_ops_gen import *`. This is similar to the way that generated code operates in the C++ world.
* If providing dialect op extensions, those need to be moved from `_foo.py` -> `_foo_ops_ext.py`.
Differential Revision: https://reviews.llvm.org/D98096
To unify the naming scheme across all ops in the SPIR-V dialect, we are
moving from spv.camelCase to spv.CamelCase everywhere. For ops that
don't have a SPIR-V spec counterpart, we use spv.mlir.snake_case.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D98014
To unify the naming scheme across all ops in the SPIR-V dialect,
we are moving from spv.camelCase to spv.CamelCase everywhere.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D97918
* Mostly imported from experimental repo as-is with cosmetic changes.
* Temporarily left out emission code (for building ops at runtime) to keep review size down.
* Documentation and lit tests added fresh.
* Sample op library that represents current Linalg named ops included.
Differential Revision: https://reviews.llvm.org/D97995
To unify the naming scheme across all ops in the SPIR-V dialect, we are
moving from spv.camelCase to spv.CamelCase everywhere.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D97919
To unify the naming scheme across all ops in the SPIR-V dialect, we are
moving from `spv.camelCase` to `spv.CamelCase` everywhere.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D97917
To unify the naming scheme across all ops in the SPIR-V dialect, we are
moving from spv.camelCase to spv.CamelCase everywhere.
Differential Revision: https://reviews.llvm.org/D97920
If one operand is not used in the formula, it will be considered a
shaped operand. And the result of indexing map of the operand will be the first
reduction dims.
Depends On D97383
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D97384
DebugCounters allow for selectively enabling the execution of a debug action based upon a "counter". This counter is comprised of two components that are used in the control of execution of an action, a "skip" value and a "count" value. The "skip" value is used to skip a certain number of initial executions of a debug action. The "count" value is used to prevent a debug action from executing after it has executed for a set number of times (not including any executions that have been skipped). For example, a counter for a debug action with `skip=47` and `count=2`, would skip the first 47 executions, then execute twice, and finally prevent any further executions.
This is effectively the same as the DebugCounter infrastructure in LLVM, but using the DebugAction infrastructure in MLIR. We can't simply reuse the DebugCounter support already present in LLVM due to its heavy reliance on global constructors (which are not allowed in MLIR). The DebugAction infrastructure already nicely supports the debug counter use case, and promotes the separation of policy and mechanism design philosophy.
Differential Revision: https://reviews.llvm.org/D96395
This revision adds the infrastructure for `Debug Actions`. This is a DEBUG only
API that allows for external entities to control various aspects of compiler
execution. This is conceptually similar to something like DebugCounters in LLVM, but at a lower level. This framework doesn't make any assumptions about how the higher level driver is controlling the execution, it merely provides a framework for connecting the two together. This means that on top of DebugCounter functionality, we could also provide more interesting drivers such as interactive execution. A high level overview of the workflow surrounding debug actions is
shown below:
* Compiler developer defines an `action` that is taken by the a pass,
transformation, utility that they are developing.
* Depending on the needs, the developer dispatches various queries, pertaining
to this action, to an `action manager` that will provide an answer as to
what behavior the action should do.
* An external entity registers an `action handler` with the action manager,
and provides the logic to resolve queries on actions.
The exact definition of an `external entity` is left opaque, to allow for more
interesting handlers.
This framework was proposed here: https://llvm.discourse.group/t/rfc-debug-actions-in-mlir-debug-counters-for-the-modern-world
Differential Revision: https://reviews.llvm.org/D84986
`verifyConstructionInvariants` is intended to allow for verifying the invariants of an attribute/type on construction, and `getChecked` is intended to enable more graceful error handling aside from an assert. There are a few problems with the current implementation of these methods:
* `verifyConstructionInvariants` requires an mlir::Location for emitting errors, which is prohibitively costly in the situations that would most likely use them, e.g. the parser.
This creates an unfortunate code duplication between the verifier code and the parser code, given that the parser operates on llvm::SMLoc and it is an undesirable overhead to pre-emptively convert from that to an mlir::Location.
* `getChecked` effectively requires duplicating the definition of the `get` method, creating a quite clunky workflow due to the subtle different in its signature.
This revision aims to talk the above problems by refactoring the implementation to use a callback for error emission. Using a callback allows for deferring the costly part of error emission until it is actually necessary.
Due to the necessary signature change in each instance of these methods, this revision also takes this opportunity to cleanup the definition of these methods by:
* restructuring the signature of `getChecked` such that it can be generated from the same code block as the `get` method.
* renaming `verifyConstructionInvariants` to `verify` to match the naming scheme of the rest of the compiler.
Differential Revision: https://reviews.llvm.org/D97100
* It was decided that this was the end of the line for the existing custom tc parser/generator, and this is the first step to replacing it with a declarative format that maps well to mathy source languages.
* One such source language is implemented here: https://github.com/stellaraccident/mlir-linalgpy/blob/main/samples/mm.py
* In fact, this is the exact source of the declarative `polymorphic_matmul` in this change.
* I am working separately to clean this python implementation up and add it to MLIR (probably as `mlir.tools.linalg_opgen` or equiv). The scope of the python side is greater than just generating named ops: the ops are callable and directly emit `linalg.generic` ops fully dynamically, and this is intended to be a feature for frontends like npcomp to define custom linear algebra ops at runtime.
* There is more work required to handle full type polymorphism, especially with respect to integer formulations, since they require more specificity wrt types.
* Followups to this change will bring the new generator to feature parity with the current one and delete the current. Roughly, this involves adding support for interface declarations and attribute symbol bindings.
Differential Revision: https://reviews.llvm.org/D97135
This commit introduced a cyclic dependency:
Memref dialect depends on Standard because it used ConstantIndexOp.
Std depends on the MemRef dialect in its EDSC/Intrinsics.h
Working on a fix.
This reverts commit 8aa6c3765b.
Create the memref dialect and move several dialect-specific ops without
dependencies to other ops from std dialect to this dialect.
Moved ops:
AllocOp -> MemRef_AllocOp
AllocaOp -> MemRef_AllocaOp
DeallocOp -> MemRef_DeallocOp
MemRefCastOp -> MemRef_CastOp
GetGlobalMemRefOp -> MemRef_GetGlobalOp
GlobalMemRefOp -> MemRef_GlobalOp
PrefetchOp -> MemRef_PrefetchOp
ReshapeOp -> MemRef_ReshapeOp
StoreOp -> MemRef_StoreOp
TransposeOp -> MemRef_TransposeOp
ViewOp -> MemRef_ViewOp
The roadmap to split the memref dialect from std is discussed here:
https://llvm.discourse.group/t/rfc-split-the-memref-dialect-from-std/2667
Differential Revision: https://reviews.llvm.org/D96425
After discussion, it seems like we want to go with
"inherent/discardable". These seem to best capture the relationship with
the op semantics and don't conflict with other terms.
Please let me know your preferences. Some of the other contenders are:
```
"intrinsic" side | "annotation" side
-----------------+------------------
characteristic | annotation
closed | open
definitional | advisory
essential | discardable
expected | unexpected
innate | acquired
internal | external
intrinsic | extrinsic
known | unknown
local | global
native | foreign
inherent | acquired
```
Rationale:
- discardable: good. discourages use for stable data.
- inherent: good
- annotation: redundant and doesn't convey difference
- intrinsic: confusable with "compiler intrinsics".
- definitional: too much of a mounthful
- extrinsic: too exotic of a word and hard to say
- acquired: doesn't convey the relationship to the semantics
- internal/external: not immediately obvious: what is internal to what?
- innate: similar to intrinsic but worse
- acquired: we don't typically think of an op as "acquiring" things
- known/unknown: by who?
- local/global: to what?
- native/foreign: to where?
- advisory: confusing distinction: is the attribute itself advisory or
is the information it provides advisory?
- essential: an intrinsic attribute need not be present.
- expected: same issue as essential
- unexpected: by who/what?
- closed/open: whether the set is open or closed doesn't seem essential
to the attribute being intrinsic. Also, in theory an op can have an
unbounded set of intrinsic attributes (e.g. `arg<N>` for func).
- characteristic: unless you have a math background this probably
doesn't make as much sense
Differential Revision: https://reviews.llvm.org/D96093
This allows for referencing nearly every component of an operation from within a custom directive.
It also fixes a bug with the current type_ref implementation, PR48478
Differential Revision: https://reviews.llvm.org/D96189
- attribute-dict production is redundant with dictionary-attribute
- definitions of attribute aliases were part of the same production as
uses of attribute aliases
- `std.dim` now accepts the dimension number as an operand, so the
example is out of date. Use the predicate of std.cmpi as a better
example.
Differential Revision: https://reviews.llvm.org/D96076
Fixes a few small issues in the docs. It seems one of the examples was missing
the expected MLIR output due to a copy-paste typo.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D95599
* As discussed, fixes the ordering or (operands, results) -> (results, operands) in various `create` like methods.
* Fixes a syntax error in an ODS accessor method.
* Removes the linalg example in favor of a test case that exercises the same.
* Fixes FuncOp visibility to properly use None instead of the empty string and defaults it to None.
* Implements what was documented for requiring that trailing __init__ args `loc` and `ip` are keyword only.
* Adds a check to `InsertionPoint.insert` so that if attempting to insert past the terminator, an exception is raised telling you what to do instead. Previously, this would crash downstream (i.e. when trying to print the resultant module).
* Renames `_ods_build_default` -> `build_generic` and documents it.
* Removes `result` from the list of prohibited words and for single-result ops, defaults to naming the result `result`, thereby matching expectations and what is already implemented on the base class.
* This was intended to be a relatively small set of changes to be inlined with the broader support for ODS generating the most specific builder, but it spidered out once actually testing various combinations, so rolling up separately.
Differential Revision: https://reviews.llvm.org/D95320
This revision adds support for using either operand or result types to anchor an optional group. It also removes the arbitrary restriction that type directives must refer to variables in the same group, which is overly limiting for a declarative format syntax.
Fixes PR#48784
Differential Revision: https://reviews.llvm.org/D95109
Add factory to create streams for logging the reproducer. Allows for more general logging (beyond file) and logging the configuration/module separately (logged in order, configuration before module).
Also enable querying filename of ToolOutputFile.
Differential Revision: https://reviews.llvm.org/D94868
A cast-like operation is one that converts from a set of input types to a set of output types. The arity of the inputs may be from 0-N, whereas the arity of the outputs may be anything from 1-N. Cast-like operations are removable in cases where they produce a "no-op", i.e when the input types and output types match 1-1.
Differential Revision: https://reviews.llvm.org/D94831
* This allows us to hoist trait level information for regions and sized-variadic to class level attributes (_ODS_REGIONS, _ODS_OPERAND_SEGMENTS, _ODS_RESULT_SEGMENTS).
* Eliminates some splicey python generated code in favor of a native helper for it.
* Makes it possible to implement custom, variadic and region based builders with one line of python, without needing to manually code access to the segment attributes.
* Needs follow-on work for region based callbacks and support for SingleBlockImplicitTerminator.
* A follow-up will actually add ODS support for generating custom Python builders that delegate to this new method.
* Also includes the start of an e2e sample for constructing linalg ops where this limitation was discovered (working progressively through this example and cleaning up as I go).
Differential Revision: https://reviews.llvm.org/D94738
* Development setup recommendations.
* Test updates to match what we actually do.
* Update cmake variable `PYTHON_EXECUTABLE` -> `Python3_EXECUTABLE` to match the upgrade to python3 repo wide.
The standard and gpu dialect both have `alloc` operations which use the
memory effect `MemAlloc`. In both cases, it is specified on both the
operation itself and on the result. This results in two memory effects
being created for these operations. When `MemAlloc` is defined on an
operation, it represents some background effect which the compiler
cannot reason about, and inhibits the ability of the compiler to
remove dead `std.alloc` operations. This change removes the uneeded
`MemAlloc` effect from these operations and leaves the effect on the
result, which allows dead allocs to be erased.
There is the same problem, but to a lesser extent, with MemFree, MemRead
and MemWrite. Over-specifying these traits is not currently inhibiting
any optimization.
Differential Revision: https://reviews.llvm.org/D94662
This spilts out BufferDeallocationInternals.md, since buffer
deallocation is not part of bufferization per se.
Differential Revision: https://reviews.llvm.org/D94351