A bit more painful than G_INSERT because it was more widely used, but this
should simplify the handling of extract operations in most locations.
llvm-svn: 297100
Summary:
This will allow future patches to inspect the details of the LLT. The implementation is now split between
the Support and CodeGen libraries to allow TableGen to use this class without introducing layering concerns.
Thanks to Ahmed Bougacha for finding a reasonable way to avoid the layering issue and providing the version of this patch without that problem.
Reviewers: t.p.northover, qcolombet, rovka, aditya_nandakumar, ab, javed.absar
Subscribers: arsenm, nhaehnle, mgorny, dberris, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30046
llvm-svn: 296474
We were stopping the translation of the parent block when the
translation of an instruction failed, but we were still trying to
translate the other blocks of the parent function.
Don't do that.
llvm-svn: 296047
Having more fine-grained information on the specific construct that
caused us to fallback is valuable for large-scale data collection.
We still have the fallback warning, that's also used for FastISel.
We still need to remove the fallback warning, and teach FastISel to also
emit remarks (it currently has a combination of the warning, stats, and
debug prints: the remarks could unify all three).
The abort-on-fallback path could also be better handled using remarks:
one could imagine a "-Rpass-error", analoguous to "-Werror", which would
promote missed/failed remarks to errors. It's not clear whether that
would be useful for other remarks though, so we're not there yet.
llvm-svn: 296013
This instruction clears the low bits of a pointer without requiring (possibly
dodgy if pointers aren't ints) conversions to and from an integer. Since (as
far as I'm aware) all masks are statically known, the instruction takes an
immediate operand rather than a register to specify the mask.
llvm-svn: 295103
It'll usually be immediately legalized back to a libcall, but occasionally
something can be done with it so we'd just as well enable that flexibility from
the start.
llvm-svn: 294530
Well, sort of. But the lower-level code that invoke used to be using completely
botched the handling of varargs functions, which hopefully won't be possible if
they're using the same code.
llvm-svn: 293670
For some reason the exception selector register must be a pointer (that's
assumed by SDag); on the other hand, it gets moved into an IR-level type which
might be entirely different (i32 on AArch64). IRTranslator needs to be aware of
this.
llvm-svn: 293546
We have to delete the block manually or it leaks. That triggers failures in
-fsanitize=leak bots (unsurprisingly), which should be fixed by this patch.
llvm-svn: 293347
The translation scheme is mostly cribbed from FastISel, and it's not entirely
convincing semantically. But it does seem to work in the common cases and allow
variables to be printed so it can't be all wrong.
llvm-svn: 293228
There was a bug here where we were using p0 instead of s32 for the
selector type in the landingpad. Instead of hardcoding these types we
should get the types from the landingpad instruction directly.
Note that we replicate an assert from SDAG here to only support
two-valued landingpads.
llvm-svn: 292995
Translating the constant can create more VRegs, which can invalidate the
reference into the DenseMap. So we have to look up the value again after all
that's happened.
llvm-svn: 292675
It's easier to test the non-fallback path if we just drop these
intrinsics for now, like we did before we added the fallback path.
We'll obviously need to fix this properly, but the fixme for that is
already here.
llvm-svn: 292547
Correctly populating Machine PHIs relies on knowing exactly how the IR level
CFG was lowered to MachineIR. This needs to be tracked by any translation
phases that meddle (currently only SwitchInst handling).
This reapplies r291973 which was reverted because of testing failures. Fixes:
+ Don't return an ArrayRef to a local temporary.
+ Incorporate Kristof's suggested comment improvements.
llvm-svn: 292278
This reverts commit r291973.
The test fails in a Release build with LLVM_BUILD_GLOBAL_ISEL enabled.
AFAICT, llc segfaults. I'll add a few more details to the original
commit.
llvm-svn: 292061
Correctly populating Machine PHIs relies on knowing exactly how the IR level
CFG was lowered to MachineIR. This needs to be tracked by any translation
phases that meddle (currently only SwitchInst handling).
llvm-svn: 291973
To make this work, pointers from the MachineBasicBlock to the LLVM-IR-level
basic blocks need to be initialized, as the AsmPrinter uses this link to be
able to print out labels for the basic blocks that are address-taken.
Most of the changes in this commit are about adapting existing tests to include
the basic block name that is now printed out in the MIR format, now that the
name becomes available as the link to the LLVM-IR basic block is initialized.
The relevant test change for the functionality added in this patch are the
added "(address-taken)" strings in
test/CodeGen/AArch64/GlobalISel/arm64-irtranslator.ll.
Differential Revision: https://reviews.llvm.org/D28123
llvm-svn: 291105
This commit does this using a trivial chain of conditional branches. In the
future, we probably want to reuse the optimized switch lowering used in
SelectionDAG.
Differential Revision: https://reviews.llvm.org/D28176
llvm-svn: 291099
The IRTranslator uses an additional block before the LLVM-IR entry block
to perform all the ABI lowering and the constant hoisting. Thus, this
block is the actual entry block and it falls through the LLVM-IR entry
block. However, with such representation, we end up with two basic
blocks that are not maximal.
Therefore, this patch adds a bit of canonicalization by merging both the
LLVM-IR entry block and the ABI lowering/constants hoisting into one
block, making the resulting block more likely to be maximal (indeed the
LLVM-IR entry block might not have been maximal).
llvm-svn: 289891
Supporting them properly is a reasonably complex chunk of work, so to allow bot
testing before then we should at least be able to fall back to DAG ISel.
llvm-svn: 289150
ConstantExpr instances were emitting code into the current block rather than
the entry block. This meant they didn't necessarily dominate all uses, which is
clearly wrong.
llvm-svn: 288985
Having to ask the MIRBuilder for the current function is a little awkward, and
I'm intending to improve how that's threaded through anyway.
llvm-svn: 288983
MachineIRBuilder had weird before/after and beginning/end flags for the insert
point. Unfortunately the non-default means that instructions will be inserted
in reverse order which is almost never what anyone wants.
Really, I think we just want (like IRBuilder has) the ability to insert at any
C++ iterator-style point (i.e. before any instruction or before MBB.end()). So
this fixes MIRBuilders to behave like IRBuilders in this respect.
llvm-svn: 288980
The function used to finish off PHIs by adding the relevant basic blocks can
fail if we're aborting and still don't actually have the needed
MachineBasicBlocks. So avoid trying in that case.
llvm-svn: 288727
When the entry block was empty after arg lowering, we were always placing
constants at the end. This is probably hamrless while translating the same
block, but horribly wrong once its terminator has been translated. So switch to
inserting at the beginning.
llvm-svn: 288720
This makes it more similar to the floating-point constant, and also allows for
larger constants to be translated later. There's no real functional change in
this patch though, just syntax updates.
llvm-svn: 288712
Returning 0 (NoReg) from getOrCreateVReg leads to unexpected situations later
in the translation. It's better to return a valid (if undefined) register and
let the rest of the instruction carry on as planned.
llvm-svn: 288709
Recommitting r288293 with some extra fixes for GlobalISel code.
Most of the exception handling members in MachineModuleInfo is actually
per function data (talks about the "current function") so it is better
to keep it at the function instead of the module.
This is a necessary step to have machine module passes work properly.
Also:
- Rename TidyLandingPads() to tidyLandingPads()
- Use doxygen member groups instead of "//===- EH ---"... so it is clear
where a group ends.
- I had to add an ugly const_cast at two places in the AsmPrinter
because the available MachineFunction pointers are const, but the code
wants to call tidyLandingPads() in between
(markFunctionEnd()/endFunction()).
Differential Revision: https://reviews.llvm.org/D27227
llvm-svn: 288405
They're not SelectionDAG- or FunctionLoweringInfo-specific. They
are, however, specific to building MMI from IR.
We could make them members, but it's nice having MMI be a "simple" data
structure and this logic kept separate.
This also lets us reuse them from GlobalISel.
llvm-svn: 287167
The only implementation that exists immediately looks it up anyway, and the
information is needed to handle various parameter attributes (stored on the
function itself).
llvm-svn: 282068
This should match the existing behaviour for passing complicated struct and
array types, in particular HFAs come through like that from Clang.
For C & C++ we still need to somehow support all the weird ABI flags, or at
least those that are present in the IR (signext, byval, ...), and stack-based
parameter passing.
llvm-svn: 281977
Otherwise everything that needs to work out what size they are has to keep a
DataLayout handy, which is a bit silly and very annoying.
llvm-svn: 281597
Unlike SDag, we use a separate G_GEP instruction (much simplified, only taking
a single byte offset) to preserve the pointer type information through
selection.
llvm-svn: 281205
These instructions were only necessary when type information was stored in the
MachineInstr (because only generic MachineInstrs possessed a type). Now that
it's in MachineRegisterInfo, COPY and PHI work fine.
llvm-svn: 281037
We want each register to have a canonical type, which means the best place to
store this is in MachineRegisterInfo rather than on every MachineInstr that
happens to use or define that register.
Most changes following from this are pretty simple (you need an MRI anyway if
you're going to be doing any transformations, so just check the type there).
But legalization doesn't really want to check redundant operands (when, for
example, a G_ADD only ever has one type) so I've made use of MCInstrDesc's
operand type field to encode these constraints and limit legalization's work.
As an added bonus, more validation is possible, both in MachineVerifier and
MachineIRBuilder (coming soon).
llvm-svn: 281035
They're another source of generic vregs, which are going to need a type on the
definition when we remove the register width from MachineRegisterInfo.
llvm-svn: 280412
There should be no functional change here, I'm just making the implementation
of "frem" (to libcall) legalization easier for a followup.
llvm-svn: 279987
This adds a G_INSERT instruction, which technically makes G_SEQUENCE redundant
(it's equivalent to a G_INSERT into an IMPLICIT_DEF). We'll leave G_SEQUENCE
for now though: it's likely to be far more common as it's a fundamental part of
legalization, so avoiding the mess and bloat of the extra IMPLICIT_DEFs is
probably worthwhile.
llvm-svn: 279306
First, make sure all types involved are represented, rather than being implicit
from the register width.
Second, canonicalize all types to scalar. These operations just act in bits and
don't care about vectors.
Also standardize spelling of Indices in the MachineIRBuilder (NFC here).
llvm-svn: 279294
Unsigned addition and subtraction can reuse the instructions created to
legalize large width operations (i.e. both produce and consume a carry flag).
Signed operations and multiplies get a dedicated op-with-overflow instruction.
Once this is produced the two values are combined into a struct register (which
will almost always be merged with a corresponding G_EXTRACT as part of
legalization).
llvm-svn: 279278
It's sharing the integer G_CONSTANT for now since I don't *think* it creates
any ambiguity (even on weird archs). If that turns out wrong we can create a
G_PTRCONSTANT or something.
llvm-svn: 278423
It's more than just inttoptr, but the others can't be tested until we have
support for non-trivial constants (they currently get unavoidably folded to a
ConstantInt).
llvm-svn: 278303
If the value produced by the bitcast hasn't been referenced yet, we can simply
reuse the input register avoiding an unnecessary COPY instruction.
llvm-svn: 278245
For now put them all in the entry block. This should be correct but may give
poor runtime performance. Hopefully MachineSinking combined with
isReMaterializable can solve those issues, but if not the interface is sound
enough to support alternatives.
llvm-svn: 278168
These come in two variants for now: G_INTRINSIC and G_INTRINSIC_W_SIDE_EFFECTS.
We may decide to split the latter up with finer-grained restrictions later, if
necessary.
llvm-svn: 277224
For MachineInstrBuilder, having to manually use RegState::Define is ugly and
makes register definitions clunkier than they need to be, so this adds two
convenience functions: addDef and addUse.
For MachineIRBuilder, we want to avoid BuildMI's first-reg-is-def rule because
it's hidden away and causes bugs. So this patch switches buildInstr to
returning a MachineInstrBuilder and adding *all* operands via addDef/addUse.
NFC.
llvm-svn: 277176
Instead of an ad-hoc collection of "buildInstr" functions with varying numbers
of registers, this uses variadic templates to provide for as many regs as
needed!
Also make IRtranslator use new "buildBr" function instead of some weird generic
one that no-one else would really use.
llvm-svn: 276762
This adds LLVM's 3 main cast instructions (inttoptr, ptrtoint, bitcast) to the
IRTranslator. The first two are direct translations (with 2 MachineInstr types
each). Since LLT discards information, a bitcast might become trivial and we
emit a COPY in those cases instead.
llvm-svn: 276690
This should be all the low-level instruction selection needs to determine how
to implement an operation, with the remaining context taken from the opcode
(e.g. G_ADD vs G_FADD) or other flags not based on type (e.g. fast-math).
llvm-svn: 276158
We can freeze the registers after the MachineFrameInfo has been configured (by
telling it about calls, inline asm, ...). This doesn't happen at all yet, but
will be part of IR translation.
Fixes -verify-machineinstrs assertion.
llvm-svn: 275221
Original message:
Get rid of the ifdefs in TargetLowering.
Introduce a new API used only by GlobalISel: CallLowering.
This API will contain target hooks dedicated to call lowering.
llvm-svn: 260998
This patch adds the necessary plumbing to cmake to build the sources related to
GlobalISel.
To build the sources related to GlobalISel, we need to add -DBUILD_GLOBAL_ISEL=ON.
By default, this is OFF, thus GlobalISel sources will not impact people that do
not explicitly opt-in.
Differential Revision: http://reviews.llvm.org/D15983
llvm-svn: 258344