It makes no sense to try and compile for arm7tdmi when we're targeting
something like gnueabihf. Although not strictly the most basic hardware
conceivable, I believe arm1176jzf-s is a reasonable compromise (that can always
be overridden explicitly if needed) since it's still in reasonably common use
unlike earlier cores.
Patch by Stephen Kelly.
llvm-svn: 188796
This patch adds four new options to control:
- Spaces after control keyworks (if(..) vs if (..))
- Spaces in empty parentheses (f( ) vs f())
- Spaces in c-style casts (( int )1.0 vs (int)1.0)
- Spaces in other parentheses (f(a) vs f( a ))
Patch by Joe Hermaszewski. Thank you for working on this!
llvm-svn: 188793
The IncludeDirectives class helps with detecting and modifying #include
directives. For now it allows the users to add angled-includes in a source file.
This is a start for this class that will evolve in the future to add more
functionality.
This should fix the reverted commit r188610 (buildbot failures on Windows).
llvm-svn: 188791
SystemZTargetLowering::emitStringWrapper() previously loaded the character
into R0 before the loop and made R0 live on entry. I'd forgotten that
allocatable registers weren't allowed to be live across blocks at this stage,
and it confused LiveVariables enough to cause a miscompilation of f3 in
memchr-02.ll.
This patch instead loads R0 in the loop and leaves LICM to hoist it
after RA. This is actually what I'd tried originally, but I went for
the manual optimisation after noticing that R0 often wasn't being hoisted.
This bug forced me to go back and look at why, now fixed as r188774.
We should also try to optimize null checks so that they test the CC result
of the SRST directly. The select between null and the SRST GPR result could
then usually be deleted as dead.
llvm-svn: 188779
Post-RA LICM keeps three sets of registers: PhysRegDefs, PhysRegClobbers
and TermRegs. When it sees a definition of R it adds all aliases of R
to the corresponding set, so that when it needs to test for membership
it only needs to test a single register, rather than worrying about
aliases there too. E.g. the final candidate loop just has:
unsigned Def = Candidates[i].Def;
if (!PhysRegClobbers.test(Def) && ...) {
to test whether register Def is multiply defined.
However, there was also a shortcut in ProcessMI to make sure we didn't
add candidates if we already knew that they would fail the final test.
This shortcut was more pessimistic than the final one because it
checked whether _any alias_ of the defined register was multiply defined.
This is too conservative for targets that define register pairs.
E.g. on z, R0 and R1 are sometimes used as a pair, so there is a
128-bit register that aliases both R0 and R1. If a loop used
R0 and R1 independently, and the definition of R0 came first,
we would be able to hoist the R0 assignment (because that used
the final test quoted above) but not the R1 assignment (because
that meant we had two definitions of the paired R0/R1 register
and would fail the shortcut in ProcessMI).
This patch just uses the same check for the ProcessMI shortcut as
we use in the final candidate loop.
llvm-svn: 188774
Previously we used a const-pool load for virtually all 64-bit floating values.
Actually, we can get quite a few common values (including 0.0, 1.0) via "vmov"
instructions of one stripe or another.
llvm-svn: 188773